Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior
Abstract
:1. Introduction
- (H1)
- for , and and are ratios of odd positive integers;
- (H2)
- , , are continuous functions and for ;
- (H3)
- are continuous functions with , , , , and .
Literature Review
2. Main Results
2.1. Auxiliary Lemmas
- (i)
- , and
- (ii)
- (iii)
- is decreasing.
2.2. Oscillation Theorems
3. Conclusions
- (H4)
- , , for and for .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Springer: Dordrecht, Germany, 2002. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Sturm, C. Sur les equations differentielles lineaires du second ordre. J. Math. Pures Appl. 1836, 1, 106–186. [Google Scholar]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, W.T. Nonoscillation and Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Lomakin, Y.V.; Norkin, S.B. Asymptotic behavior of solutions to a second-order linear homogeneous equation with deviating argument. Ukr. Math. J. 1969, 21, 331–336. [Google Scholar] [CrossRef]
- Ackerman, E.; Gatewood, L.; Rosever, J.; Molnar, G. Blood Glucose Regulation and Diabetes. Concept and Models of Biomathematics; Marcel Dekker: New York, NY, USA, 1969. [Google Scholar]
- MacDonald, N. Biological Delay Systems Linear Stability Theory; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Santra, S.S.; Sethi, A.K.; Moaaz, O.; Khedher, K.M.; Yao, S.-W. New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation. Mathematics 2021, 9, 1111. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments. Math. Slovaca 2020, 70, 389–400. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 2015, 266, 481–490. [Google Scholar] [CrossRef]
- Dong, J.G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput. Math. Appl. 2010, 59, 3710–3717. [Google Scholar] [CrossRef]
- Ye, L.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations. Appl. Math. Comput. 2009, 207, 388–396. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More Effective Criteria for Oscillation of Second-Order Differential Equations with Neutral Arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Jadlovská, I.; Džurina, J.; Graef, J.R.; Grace, S.R. Sharp oscillation theorem for fourth-order linear delay differential equations. J. Inequalities Appl. 2022, 2022, 122. [Google Scholar] [CrossRef]
- Liu, Q.; Bohner, M.; Grace, S.R.; Li, T. Asymptotic behavior of even-order damped differential equations with p-Laplacian like operators and deviating arguments. J. Inequalities Appl. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Liu, Q.; Grace, S.R.; Tunç, E.; Li, T. Oscillation of noncanonical fourth-order dynamic equations. Appl. Math. Sci. Eng. 2023, 31, 2239435. [Google Scholar] [CrossRef]
- Purushothaman, G.; Suresh, K.; Tunc, E.; Thandapani, E. Oscillation criteria of fourth-order nonlinear semi-noncanonical neutral differential equations via a canonical transform. Electron. J. Differ. Equ. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 2014, 2014, 527–531. [Google Scholar] [CrossRef]
- Senel, M.T.; Utku, N. Oscillation criteria for third-order neutral dynamic equations with continuously distributed delay. Adv. Differ. Equ. 2014, 2014, 220. [Google Scholar] [CrossRef]
- Wu, H.; Erbe, L.; Peterson, A. Oscillation of solution to second-order half-linear delay dynamic equations on time scales. Electron. J. Differ. Equ. 2016, 2016, 71. [Google Scholar]
- Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation theory for non-linear neutral delay differential equations of third order. dd2Appl. Sci. 2020, 10, 4855. [Google Scholar] [CrossRef]
- Muhib, A.; Abdeljawad, T.; Moaaz, O.; Elabbasy, E.M. Oscillatory properties of odd-order delay differential equations with distribution deviating arguments. dd2Appl. Sci. 2020, 10, 5952. [Google Scholar] [CrossRef]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Kumar, M.S.; Ganesan, V. Asymptotic behavior of solutions of third-order neutral differential equations with discrete and distributed delay. Aims Math. 2020, 5, 3851–3874. [Google Scholar] [CrossRef]
- Hasanbulli, M.; Rogovchenko, Y.V. Oscillation criteria for second order nonlinear neutral differential equations. Appl. Math. Comput. 2010, 215, 4392–4399. [Google Scholar] [CrossRef]
- Baculíková, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Liu, L.; Bai, Y. New oscillation criteria for second-order nonlinear neutral delay differential equations. J. Computat. Appl. Math. 2009, 231, 657–663. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2007, 192, 216–222. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Liand, T.; Zhang, C. Oscillation of second order differential equations with a sublinear neutral term. Carpathian J. Math. 2014, 30, 1–6. [Google Scholar] [CrossRef]
- Li, T.; Senel, M.T.; Zhang, C. Oscillation of solutions to second-order half-linear differential equations with neutral terms. Electron. J. Diff. Equ. 2013, 2013, 1–7. [Google Scholar]
- Dzurina, J.; Thandapani, E.; Baculíková, B.; Dharuman, C.; Prabaharan, N. Oscillation of second order nonlinear differential equations with several sub-linear neutral terms. Nonlinear Dyn. Syst. Theory 2019, 19, 124–132. [Google Scholar]
- Tamilvanan, S.; Thandapani, E.; Dzurina, J. Oscillation of second order nonlinear differential equation with sublinear neutral term. Diff. Equ. Appl. 2017, 9, 29–35. [Google Scholar]
- Moaaz, O.; Masood, F.; Cesarano, C.; Alsallami, S.A.; Khalil, E.M.; Bouazizi, M.L. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics 2022, 10, 1356. [Google Scholar] [CrossRef]
- Moaaz, O.; Albalawi, W. Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Math. 2023, 8, 12729–12750. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation theorems for second order neutral differential equations. Comput. Math. Appl. 2011, 61, 94–99. [Google Scholar] [CrossRef]
- Baculíková, B.; Li, T.; Džurina, J. Oscillation theorems for second-order superlinear neutral differential equations. Math. Slovaca 2013, 63, 123–134. [Google Scholar] [CrossRef]
- Zhang, C.; Senel, M.T.; Li, T. Oscillation of second-order half-linear differential equations with several neutral terms. J. Appl. Math. Comput. 2014, 44, 511–518. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden—Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Letter. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A.; Ahmad, H.; Muhsin, W. Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator. Math. Slovaca 2023, 73, 703–712. [Google Scholar] [CrossRef]
- Moaaz, O.; Park, C.; Elabbasy, E.M.; Muhsin, W. New oscillation criteria for second-order neutral differential equations with distributed deviating arguments. Bound. Value Probl. 2021, 2021, 35. [Google Scholar] [CrossRef]
- Baculíková, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Modell. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ fordifferential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhsin, W.; Moaaz, O.; Askar, S.S.; Alshamrani, A.M.; Elabbasy, E.M. Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior. Symmetry 2023, 15, 2105. https://doi.org/10.3390/sym15122105
Muhsin W, Moaaz O, Askar SS, Alshamrani AM, Elabbasy EM. Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior. Symmetry. 2023; 15(12):2105. https://doi.org/10.3390/sym15122105
Chicago/Turabian StyleMuhsin, Waed, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, and Elmetwally M. Elabbasy. 2023. "Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior" Symmetry 15, no. 12: 2105. https://doi.org/10.3390/sym15122105
APA StyleMuhsin, W., Moaaz, O., Askar, S. S., Alshamrani, A. M., & Elabbasy, E. M. (2023). Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior. Symmetry, 15(12), 2105. https://doi.org/10.3390/sym15122105