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Abstract: In this work, new oscillation criteria are established for a second-order differential equation
with several sublinear neutral terms and in the canonical case. To determine the oscillation conditions,
we followed the Riccati approach and also compared the studied equation with a first-order delay
equation. Obtaining the oscillation conditions required deducing some new relationships linking
the solution to the corresponding function as well as its derivatives. The paper addresses some
interesting analytical points in the study of the oscillation of equations with several sublinear neutral
terms. These new findings complement some well-known findings in the literature. Furthermore, an
example is provided to show the importance of the results.
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1. Introduction

In this study, we focus on the oscillatory behavior of second-order differential equa-
tions with several sublinear neutral terms(

r(s)z′(s)
)′
+ p(s)xγ(σ(s)) = 0, (1)

where z(s) = x(s) +
k
∑

i=1
mi(s)xαi (τi(s)), s ≥ s0 > 0, and k ≥ 1 is an integer. Throughout the

paper, we assume the following:

(H1) 0 < αi ≤ 1 for i = 1, 2, . . . , k, and αi and γ are ratios of odd positive integers;

(H2) r, mi, p : [s0, ∞)→ R+ are continuous functions and lims→∞ mi(s) = 0 for i = 1, 2, . . . , k;

(H3) τi, σ : [s0, ∞) → R are continuous functions with τi(s) < s, σ(s) < s, σ′(s) > 0,
lims→∞ τi(s) = ∞, and lims→∞ σ(s) = ∞.

Equation (1) is said to be in the canonical case when∫ ∞

s0

1
r(ν)

dν = ∞. (2)
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Under a solution of (1), we refer to a nontrivial function x ∈ C([sa, ∞),R), sa ≥ s0,
which has the properties z and rz′ ∈ C1([sa, ∞),R) and satisfies (1) on [sa, ∞). We consider
only those solutions x of (1) which satisfy

sup{|x(s)| : s ≥ S} > 0 for all S ≥ sa.

A solution x of (1) is said to be nonoscillatory if it is ultimately positive or ultimately
negative; otherwise, it is said to be oscillatory. Equation (1) is called oscillatory if all of its
solutions oscillate.

It is difficult to find a closed-form solution to the nonlinear differential equations that
are obtained when modeling many phenomena. This has made studying the properties
of these equations an interest of many researchers. The qualitative theory of differential
equations has received great attention, and one of its most important branches is the theory
of oscillation, which is concerned with studying the oscillatory and asymptotic behavior of
solutions; see [1,2].

In 1836, Sturm [3] posed the oscillation problems for a class of second-order ordinary
linear differential equations when he studied thermal conductivity. Later on, precisely, in
the first half of the twentieth century, an innovative article [4] by Fite was published on
the oscillation theory of differential equations. Since then, many studies have been carried
out investigating the oscillatory behavior of different types of differential equations of
different orders.

In delay differential equations, history (previous memory) affects how a system
evolves at any given time. A differential model’s dynamics are significantly enhanced by
including such time delays. This means that mathematical models for many real problems
result in differential equations based on ancient history rather than the present; therefore,
it is necessary to investigate both the qualitative and quantitative aspects of how this
class of differential equations behaves. Since then, many academics have shown inter-
est in oscillation theory in functional differential equations. We refer the reader to the
monographs [5,6].

The importance of studying the behavior of solutions to differential equations with
delay is seen from their application in various sciences. For example, in physics, Norkin [7]
showed that the oscillation of contacts of electromagnetic switches could be characterized by
the oscillation of solutions of the second-order delay differential equation with a damping
term. In the field of medicine, several models have been presented, the most important of
which is the red blood cell survival model, where the presence of a delay function in the
equation represents the time it takes for the bone marrow to form red blood cells; a model
for diagnosing diabetes [8] and lung expansion in patients with COVID-19; and many other
models that explain epidemiological fluctuations.

A differential equation with a neutral delay (NDDE) is one in which both portions
of the equation contain the highest derivative of the function, whether it is known or
unknown, the part with the delay and the part without the delay. It should be mentioned
that the NDDEs and their special cases have applications that are intriguing in real-life
settings. In modeling networks that use lossless transmission lines (as, for example, in
high-speed computers, where lossless transmission lines are used to connect what are
known as switching circuits), technology-neutral equations are included. In the field of
biology, when considering the birth of a person or population problems, many changes
do not occur immediately, both in the interpretation of the human body’s capacity for
self-balancing and in the design of robots containing two legs [9]. Such phenomena, when
modeled as a differential equation, require later times because such cases are difficult to
express in a simple ordinary differential equation.

This study deals with the oscillatory properties of second-order differential equations
with many sublinear neutral terms. The study of the oscillatory behavior of solutions to
differential equations with delay addresses several points: classifying positive solutions
according to the sign of their derivatives; finding relationships (which appear in the form
of inequalities) between these derivatives; and estimating the relationship between the
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solution with delay and without it. We used two methods to obtain our results, namely, the
method of comparison with the oscillation in differential equations with first-order delay
and the Riccati method.

Literature Review

Recently, there has been a remarkable development in the study of the oscillatory
behavior of solutions of functional differential equations of different orders and of different
types, such as equations with delay, neutral and advanced equations, as well as equations
that include a middle term that includes damping. Second-order delay equations have been
the subject of interest and development in [10–12]. Refs. [13,14] dealt with the oscillation of
advanced equations, while neutral equations received a large share of interest, for example,
we mention [15–18]. For information, techniques, and results on the oscillation of even-
order equations, see [19–22]. On the other hand, odd-order equations have also received
great attention and extensive investigation; see [23–29].

For many years, many articles have investigated the qualitative and asymptotic behav-
ior of the NDDEs, and a large number of important results for such equations have already
been found.

Regarding the oscillation of second-order NDDEs, by refining the standard integral
averaging technique, Hasanbulli and Rogovchenko [30] obtained oscillation conditions for
the equation(

r(s)(x(s) + m(s)xα(s− τ))′
)′

+ p(s) f (x(s), x(σ(s))) = 0, s ≥ s0 ≥ 0,

where r, σ ∈ C1([s0,+∞), (0,+∞)), m, p ∈ C([s0,+∞),R), τ ≥ 0 is a constant, and
f ∈ C

(
R2,R

)
.

Many authors have discussed the oscillatory behavior of the following NDDEs or
special classes of them:(

r(s)
(
(x(s) + m(s)xα(τ(s)))′

)β
)′

+ p(s)xγ(σ(s)) = 0, s ≥ s0 ≥ 0, (3)

where α, β, and γ are ratios of positive odd integers; 0 < α ≤ 1 and γ ≥ β.
Baculíková et al. [31] studied the oscillation behavior of (3) with α = 1, and in

the canonical case (2). They provided comparison theorems that contrast the second-
order Equation (3) with a first-order differential equation. Moreover, they assumed that
τ ◦ σ = σ ◦ τ and 0 ≤ m(s) ≤ mo < ∞. Unlike many researchers who have studied the
oscillation of (3) when 0 ≤ m(s) < 1; see, e.g., Refs. [32,33].

Agarwal et al. [34] obtained sufficient conditions for the oscillation of all solutions
of Equation (3) with γ = 1. In 2016, Agarwal et al. [11] proved several oscillation results
for (3) with α = 1 and β = γ. They obtained several types of criteria that guarantee the
oscillation of all solutions using generalized Riccati substitution, which does not require
assumptions:

m′(s) ≥ 0 and σ(s) ≤ τ(s) = s− τ0 for s ≥ s0.

Their oscillation criteria for Equation (3) complemented the results reported by Hasan-
bulli and Rogovchenko [30].

Unlike the canonical case, there is a possibility of decreasing positive solutions to
second-order equations in the noncanonical case, and this requires another condition to
exclude it. Li et al. [35] studied the oscillatory characteristics of the second-order NDDEr(s)

((
x(s) +

k

∑
i=1

mi(s)x(τi(s))

)′)α
′ + p(s)xα(σ(s)) = 0, s ≥ s0 ≥ 0,
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when ∫ ∞

s0

r−1(ν)dν < ∞.

Despite the many studies that have been conducted and are still continuing to study
differential equations with a delay of the second order, few results have been obtained about
the oscillation of differential equations of the second order with a sublinear neutral term.

Recently, by using some elementary inequalities, Dzurina et al. [36] derived oscillation
findings for Equation (1) in the canonical case that extended those reported in [37]. The
findings in [36] apply to a number of classes of differential equations of the neutral type.

In [38], Moaaz et al. investigated the oscillatory properties of a neutral delay differen-
tial equation with several delays

(
r(s)

[
(x(s) + m(s)x(τ(s)))′

]α)′
+

k

∑
i=1

pi(s)xα(σi(s)) = 0.

They introduced new monotonic characteristics to the solutions of this equation, as
these properties are recursive in nature. Also, they discovered a new condition, δ > 1/2,
which ensures that all solutions oscillate. Additionally, if this criterion was not met, they
utilized an iterative strategy to improve it.

Moaaz et al. [39] derived new monotonic features of the second-order NDDE(
r(s)

(
z′(s)

)γ
)′

+ p(s)xγ(σ(s)) = 0.

They then used these features to obtain optimized oscillation parameters. Moreover,
they set criteria that ensured the oscillation of solutions of the fourth-order NDDE(

r(s)
(

z
′′′
(s)
)γ)′

+ p(s)xγ(σ(s)) = 0.

The novelty of the paper lies in obtaining new criteria that guarantee that all solutions
to the studied equation are oscillatory. Our recent findings complement those verified
in [40–42], and generalize [37] that dealt with an equation that had only one sublinear
neutral term. This manuscript is considered an extension of some of our previous work,
which was concerned with developing the study of oscillation for second-order differential
equations; see [43–45].

2. Main Results

To facilitate a clearer presentation of the main findings, we define the following
functions:

m(s) = max
0≤i≤k

mi(s),

R(s, s1) :=
∫ s

s1

1
r(ν)

dν,

R̃(s) := R(s, s1) +
∫ s

s1

σγ(ν)

νγ
βγ p(ν)ρ(ν)R2(ν, s1)dν,

R̂(s) := exp

(
−
∫ s

σ(s)

1
R̃(ν)r(ν)

dν

)
,

and

ρ(s) :=


λ1 if γ > 1;
1 if γ = 1;
λ2Rγ−1(s, s1) if γ < 1,

where λ1, λ2, and β ∈ (0, 1).
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2.1. Auxiliary Lemmas

In this section, we introduce some important lemmas that will contribute to substanti-
ating the main results.

Lemma 1 (Lemma 3 [46]). Let condition (H3) hold. If the function g satisfies g > 0, g′ > 0 and
g′′ ≤ 0 for s ≥ s0, so that there exists sυ ≥ s0 such that

g(σ(s)) ≥ υ

s
σ(s)g(s), (4)

for all υ ∈ (0, 1).

Lemma 2 (Lemma 2.3 [47]). Let χ(u) = Lu−Mu
(α+1)

α , where L and M > 0 are constants, and
α is a quotient of odd natural numbers. Then, χ at θ = (αL�((α + 1)M))α reaches its maximum
value on R and

max
u∈R

χ = χ(θ) =
αα

(α + 1)α+1
Lα+1

Mα
. (5)

Lemma 3. Assume that x is a positive solution of Equation (1) such that∫ ∞

s0

1
r(u)

∫ ∞

u
p(ν)dνdu = ∞. (6)

Then, for s ≥ s0,

(i) z(s) > 0, z′(s) > 0 and (r(s)z′(s))′ ≤ 0;

(ii) lim
s→∞

z(s) = ∞;

(iii) z(s)/R(s, s1) is decreasing.

Proof. Let x be a positive solution of (1) on [s0, ∞). Then, x(s) > 0 for s ≥ s1 ≥ s0.
We obtain (i) directly from the definition of z as well as Equation (1). Thus,

z(s) ≥ r(s)z′(s)
∫ ∞

s0

1
r(ν)

dν

≥ r(s)z′(s)R(s, s1).

From the last inequality, z(s)/R(s, s1) is a decreasing function. We claim that (6)
ensures z(s)→ ∞ as s→ ∞. Actually, as we know there is a constant c > 0, since z(s) is a
positive increasing function, such that

z(s) ≥ 2c > 0. (7)

Additionally, it comes from z(s) that

x(s) = z(s)−
k

∑
i=1

mi(s)xαi (τi(s))

≥ z(s)−
k

∑
i=1

mi(s)zαi (τi(s))

≥ z(s)−
k

∑
i=1

mi(s)(αiz(s) + (1− αi))

= z(s)

(
1−

k

∑
i=1

αimi(s)−
1

z(s)

k

∑
i=1

(1− αi)mi(s)

)
,
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where the inequality (2) was used, with b = 1. Thus, we have

x(s) ≥ z(s)

(
1−m(s)

k

∑
i=1

αi −
m(s)
z(s)

k

∑
i=1

(1− αi)

)
. (8)

Substituting (7) into (8), we obtain

x(s) ≥ 2c

(
1−m(s)

k

∑
i=1

αi −
m(s)

c

k

∑
i=1

(1− αi)

)
.

Taking (H2) into account, we have

x(s) ≥ c > 0, s ≥ s1. (9)

Integrating (1) from s to ∞ and employing (9) in the obtained inequality, we obtain

z′(s) ≥ cγ

r(s)

∫ ∞

s
p(ν)dν.

By further integrating the previous inequality from s1 to s, we can show that

z(s) ≥ z(s1) + cγ
∫ s

s1

1
r(u)

∫ ∞

u
p(ν)dνdu,

which, with (6), suggests that z(s) → ∞ for s → ∞. Hence, the proof of the lemma is
complete.

2.2. Oscillation Theorems

In this section, we present our new oscillatory criteria based on the results in the
previous section. Now, using the comparison principle, we obtain the following theorem:

Theorem 1. Assume condition (6) holds. If

lim sup
s→∞

∫ s

σ(s)
p(ν)R̃γ(σ(ν))dν > 1 (10)

or
lim inf

s→∞

∫ s

σ(s)
p(ν)R̃γ(σ(ν))dν >

1
e

, (11)

for every λ1, λ2, β ∈ (0, 1), then every solution of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x on [s0, ∞). Taking (H2) and the
characteristics of z(s), one can see that

m(s)
k

∑
i=1

αi +
m(s)
z(s)

k

∑
i=1

(1− αi) < ξ,

for any ξ ∈ (0, 1). As a result of the previous inequality and (8) that

x(s) ≥ βz(s), (12)

where β = (1− ξ) ∈ (0, 1). Substituting (12) into (1), we obtain(
r(s)z′(s)

)′
+ p(s)βγzγ(σ(s)) ≤ 0.

That is (
r(s)z′(s)

)′ ≤ −p(s)βγzγ(σ(s)). (13)
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However, it is a result of monotony r(s)z′(s) that

z(s) = z(s1) +
∫ s

s1

1
r(ν)

r(ν)z′(ν)dν ≥ R(s, s1)r(s)z′(s). (14)

Simple calculations demonstrate that(
z(s)− R(s, s1)r(s)z′(s)

)′
= −R(s, s1)

(
r(s)z′(s)

)′. (15)

Thus,
−R(s, s1)

(
r(s)z′(s)

)′ ≥ R(s, s1)p(s)βγzγ(σ(s)). (16)

Combining (15) and (16), we have(
z(s)− R(s, s1)r(s)z′(s)

)′ ≥ R(s, s1)p(s)βγzγ(σ(s)).

From (4), we obtain

(
z(s)− R(s, s1)r(s)z′(s)

)′ ≥ υγ σγ(s)
sγ

R(s, s1)p(s)βγzγ(s)

≥ υγ σγ(s)
sγ

R(s, s1)p(s)βγzγ−1(s)z(s)

≥ υγ σγ(s)
sγ

R2(s, s1)p(s)βγzγ−1(s)r(s)z′(s). (17)

Now, since z(s) is positive and increasing, we have that z(s) ≥ z(s2) ≥ µ > 0 for
s ≥ s2 ≥ s1. Moreover, since r(s)z′(s) is positive and decreasing, we see that r(s)z′(s) ≤
r(s2)z′(s2) = µ∗ for s ≥ s2, and hence

z(s) ≤ z(s2) + µ∗R(s, s1). (18)

Since R(∞, s1) = ∞, there exist constant χ > 0 and sχ > sυ such that R(s, s1) > χ for
all s ≥ sχ. Hence, from (18), we find

z(s) ≤ NR(s, s2),

where N :=
(

1
χ z(s2) + µ∗

)
. Then, we can pick s2 ≥ sχ sufficiently large such that

zγ−1(s) ≥


λ1 if γ > 1;
1 if γ = 1;
λ2Rγ−1(s, s1) if γ < 1,

(19)

for s ≥ s2, where λ1 = µγ−1 and λ2 = Nγ−1. Hence,

zγ−1(s) ≥ ρ(s),

for some λ1, λ2 ∈ (0, 1). Combining (17) with (19), we arrive at

(
z(s)− R(s, s1)r(s)z′(s)

)′ ≥ υγ σγ(s)
sγ

R2(s, s1)p(s)βγρ(s)r(s)z′(s).

Integrating the inequality from s1 to s, we obtain

z(s) ≥ R(s, s1)r(s)z′(s) + υγ
∫ s

s1

σγ(ν)

νγ
βγ p(ν)ρ(ν)R2(ν, s1)r(ν)z′(ν)dν.
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In view of the monotonicity of r(s)z′(s) and (14), gives

z(s) ≥ r(s)z′(s)
(

R(s, s1) +
∫ s

s1

σγ(ν)

νγ
βγ p(ν)ρ(ν)R2(ν, s1)dν

)
. (20)

Thus, we conclude that

z(σ(s)) ≥ r(σ(s))z′(σ(s))R̃(σ(s)). (21)

Using (21) in (13), it is evident that y(s) := r(s)z′(s) is a positive solution of the
first-order delay differential inequality

y′(s) + βγ p(s)R̃γ(σ(s))yγ(σ(s)) ≤ 0.

In view of (Theorem 1 [48]), the following associated delay differential equation

y′(s) + βγ p(s)R̃γ(σ(s))yγ(σ(s)) = 0 (22)

provides a positive solution. Nevertheless, it is commonly known that either condition (11)
or (21) guarantees oscillation of (22). This consequently suggests that (1) cannot have
positive solutions. Hence, we complete the proof.

Now, using the Riccati approach, we obtain the following theorem:

Theorem 2. Assume condition (2) holds and there exists a function ψ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

S

(
βγψ(ν)ρ(ν)p(v)R̂(ν)−

(ψ′+(ν))
2r(ν)

4ψ(ν)

)
dν = ∞, (23)

where ψ′+(ν) = max{0, ψ′(ν)} and for every λ1, λ2, β ∈ (0, 1). Then, every solution of (1) is
oscillatory.

Proof. Suppose the contrary, that (1) has a nonoscillatory solution x on [s0, ∞). The follow-
ing definition is the Riccati function

ω(s) = ψ(s)r(s)
z′(s)
z(s)

, (24)

for s ≥ s0.. Then, ω(s) > 0 for s ≥ s1. Differentiating (24), we obtain

ω′(s) =
ψ′(s)
ψ(s)

ω(s)− ψ(s)
(r(s)z′(s))′

z(s)
− 1

ψ(s)r(s)
ω2(s). (25)

By virtue of (20), we obtain

z′(s)
z(s)

≤ 1
R̃(s)r(s)

. (26)

Integrating the latter inequality from σ(s) to s, we obtain

z(σ(s))
z((s))

≥ exp

(
−
∫ s

σ(s)

1
R̃(ν)r(ν)

dν

)
.
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Combining this inequality, (13) and (19), we have

(r(s)z′(s))′

z(s)
≤ −βγρ(s)p(s)

z(σ(s))
z(s)

≤ −βγρ(s)p(s) exp

(
−
∫ s

σ(s)

1
R̃(ν)r(ν)

dν

)
= −βγρ(s)p(s)R̂(s).

By putting

L :=
ψ′(s)
ψ(s)

and M :=
1

ψ(s)r(s)
,

into (5) and then applying it in (25), we obtain

ω′(s) ≤ −
(

βγψ(s)ρ(s)p(s)R̂(s)−
(ψ′+(s))

2r(s)
4ψ(s)

)
.

Integrating the latter inequality from S to s, we obtain

∫ s

S

(
βγψ(ν)ρ(ν)p(ν)R̂(ν)−

(ψ′+(ν))
2r(ν)

4ψ(ν)

)
dν ≤ ω(s),

which contradicts condition (23). Hence, we complete the proof.

Example 1. Consider the following couple of sublinear neutral terms in the following differential
equation: (

x(s) +
1
s

x1/3
( s

2

)
+

1
s2 x1/5

( s
3

))′′
+

a
s4l3 x1/3

( s
2

)
= 0, s > 0, (27)

where k = 2, α1 = 1/3, α2 = 1/5, γ = 1/3, τ1(s) = s/2, τ2(s) = s/3, σ(s) = s/2,
m1(s) = 1/s, m2(s) = 1/s2, and p(s) = a/s4/3.

For our equation it is easy to verify that

lim
s→∞

mi(s) = 0 and lim
s→∞

τi(s) = ∞,

in addition to

R(s, s1) = s and R̃(s) =
(

1 +
aλ2

21/3

)
s.

For Theorem 1, condition (10) reduces to

lim sup
s→∞

∫ s

σ(s)
p(ν)R̃γ(σ(ν))dν = lim sup

s→∞

∫ s

s/2
a/ν4/3

(
1 +

aλ2

21/3

)(ν

2

)1/3
dν

>
a

21/3

(
1 +

a
21/3

)1/3
ln 2 > 1.

Also, condition (11) becomes

lim inf
s→∞

∫ s

σ(s)
p(ν)R̃γ(σ(ν))dν = lim inf

s→∞

∫ s

s/2
a/ν4/3

(
1 +

aλ2

21/3

)(ν

2

)1/3
dν

>
a

21/3

(
1 +

a
21/3

)1/3
ln 2 >

1
e

. (28)
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Then, Equation (27) is oscillatory if condition (28) is satisfied.
For Theorem 2, we have R̂(s) = 2c where c = −1/

(
1 + aβγλ2

21/3

)
. Letting ψ(s) = s, by applying

condition (23). Then, Equation (27) is oscillatory if

lim sup
s→∞

∫ s

S

(
βγψ(ν)ρ(ν)p(v)R̂(ν)−

(ψ′+(ν))
2r(ν)

4ψ(ν)

)
dν

= lim sup
s→∞

∫ s

S

β
1
3

1

v
1
3

λ22c

v
2
3

a

v
4
3
−

(
1
3

)
4v

1
3

dν

= lim sup
s→∞

∫ t

0

(
β

1
3 λ22cv

1

v
2
3

a

v
4
3
− 1

4v

)
dv

> 2−1/
(

1+ a
21/3

)
a >

1
4

.

Remark 1. The neutral term in Equation (27) has many sublinear neutral terms, hence the results
in [40,41] cannot be applied to Equation (27). Therefore, the results of this work apply to more
classes of neutral-type differential equations than the previous results.

3. Conclusions

In the present study, in the canonical case, we have studied the oscillatory properties
of a class of second-order differential equations with several sublinear neutral terms (1).
The oscillation of the studied equation is achieved by using two different techniques. Based
on them, we introduce new criteria, ensuring that all solutions of the equation under
study oscillate. The results obtained complement some of the existing findings in the
literature. Moreover, the reported findings are simply applicable to more widespread
nonlinear equations, (

r(s)z′(s)
)′
+ p(s) f (x(σ(s))) = 0,

By including the condition

(H4) f ∈ C(−∞, ∞), f ′(s) ≥ 0, s f (s) > 0, for s 6= 0 and − f (−st) ≥ f (st) ≥ f (s) f (t) for
st > 0.

Extending the findings to even-order equations and advanced cases would be an
intriguing area for future research. Furthermore, it would be interesting to extend this
study to higher-order differential equations in both cases, the canonical and non-canonical.
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