# Gravity = Yang–Mills

^{*}

## Abstract

**:**

- The gauge algebra of DFT, which is a duality covariant version of the diffeomorphism algebra of gravity, originates rather directly from the couplings of Yang–Mills theory.
- 4-graviton amplitudes can be computed with the ${B}_{2}$ and ${B}_{3}$ above and by construction exhibit the factorization into Yang–Mills amplitudes.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys.
**2013**, 61, 781–811. [Google Scholar] [CrossRef] - Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev.
**1935**, 48, 73–77. [Google Scholar] [CrossRef] - Einstein, A.; Podolsky, B.; Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev.
**1935**, 47, 777–780. [Google Scholar] [CrossRef] - Zwiebach, B. Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B
**1993**, 390, 33–152. [Google Scholar] [CrossRef] - Lada, T.; Stasheff, J. Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys.
**1993**, 32, 1087–1104. [Google Scholar] [CrossRef] - Hohm, O.; Zwiebach, B. L
_{∞}Algebras and Field Theory. Fortsch. Phys.**2017**, 65, 1700014. [Google Scholar] [CrossRef] - Zeitlin, A.M. Conformal Field Theory and Algebraic Structure of Gauge Theory. J. High Energy Phys.
**2010**, 03, 056. [Google Scholar] [CrossRef] - Bonezzi, R.; Chiaffrino, C.; Diaz-Jaramillo, F.; Hohm, O. Gauge invariant double copy of Yang-Mills theory: The quartic theory. Phys. Rev. D
**2023**, 107, 126015. [Google Scholar] [CrossRef] - Bonezzi, R.; Diaz-Jaramillo, F.; Hohm, O. The gauge structure of double field theory follows from Yang-Mills theory. Phys. Rev. D
**2022**, 106, 026004. [Google Scholar] [CrossRef] - Diaz-Jaramillo, F.; Hohm, O.; Plefka, J. Double field theory as the double copy of Yang-Mills theory. Phys. Rev. D
**2022**, 105, 045012. [Google Scholar] [CrossRef] - Hull, C.; Zwiebach, B. Double Field Theory. J. High Energy Phys.
**2009**, 09, 099. [Google Scholar] [CrossRef] - Siegel, W. Superspace duality in low-energy superstrings. Phys. Rev. D
**1993**, 48, 2826–2837. [Google Scholar] [CrossRef] [PubMed] - Hohm, O.; Hull, C.; Zwiebach, B. Generalized metric formulation of double field theory. JHEP
**2010**, 08, 008. [Google Scholar] [CrossRef] - Kawai, H.; Lewellen, D.C.; Tye, S.H.H. A Relation Between Tree Amplitudes of Closed and Open Strings. Nucl. Phys. B
**1986**, 269, 1–23. [Google Scholar] [CrossRef] - Bern, Z.; Carrasco, J.J.M.; Johansson, H. New Relations for Gauge-Theory Amplitudes. Phys. Rev. D
**2008**, 78, 085011. [Google Scholar] [CrossRef] - Bern, Z.; Carrasco, J.J.; Chiodaroli, M.; Johansson, H.; Roiban, R. The Duality Between Color and Kinematics and its Applications. arXiv
**2019**, arXiv:1909.01358. [Google Scholar] - Batalin, I.A.; Vilkovisky, G.A. Gauge Algebra and Quantization. Phys. Lett. B
**1981**, 102, 27–31. [Google Scholar] [CrossRef] - Henneaux, M. Lectures on the Antifield-BRST Formalism for Gauge Theories. Nucl. Phys. B Proc. Suppl.
**1990**, 18, 47–106. [Google Scholar] [CrossRef] - Borsten, L.; Kim, H.; Jurčo, B.; Macrelli, T.; Saemann, C.; Wolf, M. Double Copy from Homotopy Algebras. Fortsch. Phys.
**2021**, 69, 2100075. [Google Scholar] [CrossRef] - Galvez-Carrillo, I.; Imma; Tonks, A.; Vallette, B. Homotopy Batalin-Vilkovisky algebras. J. Noncommut. Geom.
**2012**, 6, 539–602. [Google Scholar] [CrossRef] - Reiterer, M. A homotopy BV algebra for Yang-Mills and color-kinematics. arXiv
**2019**, arXiv:1912.03110. [Google Scholar] - Bonezzi, R.; Diaz-Jaramillo, F.; Nagy, S. Gauge Independent Kinematic Algebra of Self-Dual Yang-Mills. arXiv
**2023**, arXiv:2306.08558. [Google Scholar] [CrossRef] - Ben-Shahar, M.; Johansson, H. Off-shell color-kinematics duality for Chern-Simons. J. High Energy Phys.
**2022**, 08, 035. [Google Scholar] [CrossRef] - Borsten, L.; Jurco, B.; Kim, H.; Macrelli, T.; Saemann, C.; Wolf, M. Kinematic Lie Algebras From Twistor Spaces. Phys. Rev. Lett.
**2023**, 131, 041603. [Google Scholar] [CrossRef] - Crainic, M. On the perturbation lemma, and deformations. arXiv, 2004; arXiv:math/0403266. [Google Scholar]
- Vallette, B. Algebra + homotopy = operad. Sympl. Poisson.-NonCommut. Geom.
**2014**, 62, 229–290. [Google Scholar] - Arvanitakis, A.S.; Hohm, O.; Hull, C.; Lekeu, V. Homotopy Transfer and Effective Field Theory I: Tree-level. Fortsch. Phys.
**2022**, 70, 2200003. [Google Scholar] [CrossRef] - Arvanitakis, A.S.; Hohm, O.; Hull, C.; Lekeu, V. Homotopy Transfer and Effective Field Theory II: Strings and Double Field Theory. Fortsch. Phys.
**2022**, 70, 2200004. [Google Scholar] [CrossRef] - Bonezzi, R.; Chiaffrino, C.; Diaz-Jaramillo, F.; Hohm, O. Weakly constrained double field theory: The quartic theory. arXiv
**2023**, arXiv:2306.00609. [Google Scholar] - Sen, A. Wilsonian Effective Action of Superstring Theory. J. High Energy Phys.
**2017**, 01, 108. [Google Scholar] [CrossRef] - Hohm, O.; Siegel, W.; Zwiebach, B. Doubled α
^{′}-geometry. J. High Energy Phys.**2014**, 02, 065. [Google Scholar] [CrossRef] - Hohm, O.; Zwiebach, B. Double field theory at order α
^{′}. J. High Energy Phys.**2014**, 11, 1–47. [Google Scholar] [CrossRef] - Zeitlin, A.M. Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroids and Gauge Theory. Commun. Math. Phys.
**2011**, 303, 331–359. [Google Scholar] [CrossRef] - Zeitlin, A.M. Beltrami-Courant differentials and G
_{∞}-algebras. Adv. Theor. Math. Phys.**2015**, 19, 1249–1275. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bonezzi, R.; Chiaffrino, C.; Díaz-Jaramillo, F.; Hohm, O.
Gravity = Yang–Mills. *Symmetry* **2023**, *15*, 2062.
https://doi.org/10.3390/sym15112062

**AMA Style**

Bonezzi R, Chiaffrino C, Díaz-Jaramillo F, Hohm O.
Gravity = Yang–Mills. *Symmetry*. 2023; 15(11):2062.
https://doi.org/10.3390/sym15112062

**Chicago/Turabian Style**

Bonezzi, Roberto, Christoph Chiaffrino, Felipe Díaz-Jaramillo, and Olaf Hohm.
2023. "Gravity = Yang–Mills" *Symmetry* 15, no. 11: 2062.
https://doi.org/10.3390/sym15112062