Symmetric Time-Variant IBLF-Based Tracking Control with Prescribed Performance for a Robot
Abstract
:1. Introduction
- (1)
- Enlightened by the form of the existing logarithmic and integral BLF, we propose an improved time-variant integral BLF, which is constructed by mapping out an integral upper limit function that can be used in conjunction with existing performance envelope functions. The advantage of the proposed integral barrier function is that it is easy to combine with existing performance envelope functions to achieve constraints on time-varying transient and steady-state performance [33,34].
- (2)
- The proposed control strategy only needs to normalize the error with performance-constrained requirements using the performance envelope function and then directly utilize the proposed BLF to complete performance constraint control without complex error transformation [35]. The controller design is simple and easy to implement.
- (3)
- Unlike existing integral BLFs [33,34,36,37,38], the presented BLF can deal with time-variant and symmetric constraint problems of nonlinear systems. Under the presented scheme based on this BLF, the performance requirements of the robot are always met, while the exponentially asymptotic stability of the system is obtained.
2. Problem Statement and Preparation
2.1. Robot’s Dynamics
2.2. System Transformation and Control Objective
2.3. Improved Barrier Function
3. Performance-Guaranteed Control Design
4. Simulation
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, P.; Zhang, F.; Cai, J.; Wang, D.; Meng, Z.; Guo, J. Dexterous tethered space robot: Design, measurement, control, and experiment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1452–1468. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Chen, C.L.P. A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA J. Autom. Sin. 2017, 4, 602–609. [Google Scholar] [CrossRef]
- He, W.; Ge, W.; Li, Y.; Liu, Y.-J.; Yang, C.; Sun, C. Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 45–57. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Chen, W.; Liang, X.; Liu, Y. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans. Mechatron. 2017, 22, 18–28. [Google Scholar] [CrossRef]
- Li, Z.; Huang, B.; Ajoudani, A.; Yang, C.; Su, C.-Y.; Bicchi, A. Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Trans. Robot 2018, 34, 264–271. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, Q.; Fukuda, T.; Li, C.; Huang, Q. An overview of biomimetic robots with animal behaviors. Neurocomputing 2019, 332, 339–350. [Google Scholar] [CrossRef]
- Castaño, M.L.; Tan, X. Backstepping-Based Tracking Control of Underactuated Aquatic Robots. IEEE Trans. Control Syst. Technol. 2023, 31, 1179–1195. [Google Scholar] [CrossRef]
- Xie, C.; Fan, Y.; Qiu, J. Event-based tracking control for nonholonomic mobile robots. Nonlinear Anal. Hybrid Syst. 2020, 38, 100945. [Google Scholar] [CrossRef]
- Juang, L.-H.; Zhang, J.-S. Visual Tracking Control of Humanoid Robot. IEEE Access 2019, 7, 29213–29222. [Google Scholar] [CrossRef]
- Ahmadi, S.; Fateh, M. On the Taylor series asymptotic tracking control of robots. Robotica 2019, 37, 405–427. [Google Scholar] [CrossRef]
- Wang, H.; Chen, G.; Zhang, W. A method for vehicle speed tracking by controlling driving robot. Trans. Inst. Meas. Control 2020, 42, 1521–1536. [Google Scholar] [CrossRef]
- Khan, M.U.; Li, S.; Wang, Q.; Shao, Z. Formation Control and Tracking for Co-operative Robots with Non-holonomic Constraints. J. Intell. Robot. Syst. 2016, 82, 163–174. [Google Scholar] [CrossRef]
- Tsai, F.-S.; Hsu, S.-Y.; Shih, M.-H. Adaptive Tracking Control for Robots with an Interneural Computing Scheme. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Yin, S.; Kaynak, O. Tracking Control of Robotic Manipulators with Uncertain Kinematics and Dynamics. IEEE Trans. Ind. Electron. 2016, 63, 6439–6449. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Li, S. Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method. IEEE Trans. Ind. Inform. 2018, 14, 3044–3053. [Google Scholar] [CrossRef]
- Xiao, B.; Yin, S. Exponential Tracking Control of Robotic Manipulators with Uncertain Dynamics and Kinematics. IEEE Trans. Ind. Inform. 2019, 15, 689–698. [Google Scholar] [CrossRef]
- Dai, L.; Yu, Y.; Zhai, D.-H.; Huang, T.; Xia, Y. Robust Model Predictive Tracking Control for Robot Manipulators with Disturbances. IEEE Trans. Ind. Electron. 2021, 68, 4288–4297. [Google Scholar] [CrossRef]
- Fu, D.; Huang, J.; Yin, H. Controlling an uncertain mobile robot with prescribed performance. Nonlinear Dyn. 2021, 106, 2347–2362. [Google Scholar] [CrossRef]
- Xia, H.; Chen, J.; Lan, F.; Liu, Z. Motion Control of Autonomous Vehicles with Guaranteed Prescribed Performance. Int. J. Control Autom. Syst. 2023, 18, 1510–1517. [Google Scholar] [CrossRef]
- Zheng, Z.; Feroskhan, M. Path Following of a Surface Vessel with Prescribed Performance in the Presence of Input Saturation and External Disturbances. IEEE ASME Trans. Mechatron. 2017, 22, 2564–2575. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Qin, H.; Ouyang, L.; Jing, R. Predefined-time prescribed performance control for AUV with improved performance function and error transformation. Ocean Eng. 2023, 281, 114817. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, W.; Shen, H.; Yao, J. Extended-State-Observer-Based Adaptive Prescribed Performance Control for Hydraulic Systems with Full-State Constraints. IEEE ASME Trans. Mechatron. 2022, 27, 5615–5625. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, H.; Zhang, Y.; Zhang, H.; Chang, Y. Event-Triggered Prescribed Performance Fuzzy Fault-Tolerant Control for Unknown Euler-Lagrange Systems with Any Bounded Initial Values. IEEE Trans. Fuzzy Syst. 2023, 31, 2065–2075. [Google Scholar] [CrossRef]
- Azhdari, M.; Binazadeh, T. Uniformly ultimately bounded tracking control of sandwich systems with nonsymmetric sandwiched dead-zone nonlinearity and input saturation constraint. J. Vib. Control 2022, 28, 1109–1125. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, X.; Karimi, H.R.; Han, J. Anti-disturbance control based on disturbance observer for nonlinear systems with bounded disturbances. J. Franklin Inst. 2018, 355, 4916–4930. [Google Scholar] [CrossRef]
- Wang, W.; Tong, S. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems. IEEE Trans. Cybern. 2018, 48, 522–531. [Google Scholar] [CrossRef]
- Yin, H.; Chen, Y.-H.; Yu, D.; Lü, H.; Shangguang, W. Adaptive robust control for a soft robotic snake: A smooth-zone approach. Appl. Math. Model. 2020, 80, 454–471. [Google Scholar] [CrossRef]
- Zhen, S.; Ma, M.; Liu, X.; Chen, F.; Zhao, H.; Chen, Y.-H. Model-based robust control design and experimental validation of SCARA robot system with uncertainty. Appl. J. Vib. Control 2023, 29, 91–104. [Google Scholar] [CrossRef]
- Dong, Y.; He, W.; Kong, L.; Hua, X. Impedance Control for Coordinated Robots by State and Output Feedback. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 5056–5066. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, L.; Song, T.; Zhang, M. Adaptive non-singular fast terminal sliding mode based on prescribed performance for robot manipulators. Asian J. Control 2023, 25, 3253–3268. [Google Scholar] [CrossRef]
- Lyu, W.; Zhai, D.-H.; Xiong, Y.; Xia, Y. Predefined performance adaptive control of robotic manipulators with dynamic uncertainties and input saturation constraints. J. Franklin Inst. 2021, 358, 7142–7169. [Google Scholar] [CrossRef]
- Huang, H.; He, W.; Li, J.; Xu, B.; Yang, C.; Zhang, W. Disturbance Observer-Based Fault-Tolerant Control for Robotic Systems with Guaranteed Prescribed Performance. IEEE Trans. Cybern. 2022, 52, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Integral Barrier Lyapunov Functions-based Neural Control for Strict-feedback Nonlinear Systems with Multi-constraint. Int. J. Control Autom. Syst. 2018, 16, 2002–2010. [Google Scholar] [CrossRef]
- Zhao, B.; Feng, Z.; Guo, J. Integral barrier Lyapunov functions-based integrated guidance and control design for strap-down missile with field-of-view constraint. Trans. Inst. Meas. Control 2021, 43, 1464–1477. [Google Scholar] [CrossRef]
- Dong, C.; He, S.; Dai, S.-L. Performance-Guaranteed Tracking Control of an Autonomous Surface Vessel with Parametric Uncertainties and Time-Varying Disturbances. IEEE Access 2019, 7, 101905–101914. [Google Scholar] [CrossRef]
- Li, D.-J.; Li, J.; Li, S. Adaptive control of nonlinear systems with full state constraints using Integral Barrier Lyapunov Functionals. Neurocomputing 2016, 186, 90–96. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.-J.; Chen, A.; Tong, S.; Chen, C.L. Integral Barrier Lyapunov function-based adaptive control for switched nonlinear systems. Sci. China Inf. Sci. 2020, 63, 132203. [Google Scholar] [CrossRef]
- Tang, Z.-L.; Ge, S.S.; Tee, K.P.; He, W. Robust Adaptive Neural Tracking Control for a Class of Perturbed Uncertain Nonlinear Systems with State Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 1618–1629. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Lu, S.; Tong, S. Neural Network Controller Design for an Uncertain Robot with Time-Varying Output Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2060–2068. [Google Scholar] [CrossRef]
- Liang, X.; Wang, H.; Zhang, Y. Adaptive nonsingular terminal sliding mode control for rehabilitation robots. Comput. Electr. Eng. 2022, 99, 107718. [Google Scholar] [CrossRef]
- He, W.; Chen, Y.; Yin, Z. Adaptive Neural Network Control of an Uncertain Robot with Full-State Constraints. IEEE Trans. Cybern. 2016, 46, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems with Prescribed Performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [Google Scholar] [CrossRef]
- Godhavn, J.-M.; Fossen, T.I.; Berge, S.P. Non-linear and adaptive backstepping designs for tracking control of ships. Int. J. Adapt. Control Signal Process. 1998, 12, 649–670. [Google Scholar] [CrossRef]
- Veil, C.; Muller, D.; Sawodny, O. Nonlinear disturbance observers for robotic continuum manipulators. Mechatronics 2021, 78, 102518. [Google Scholar] [CrossRef]
- Muller, D.; Veil, C.; Seidel, M.; Sawodny, O. Disturbance Observer Based Control for Quasi Continuum Manipulators. IFAC-PapersOnLine 2020, 53, 9808–9813. [Google Scholar] [CrossRef]
- Chen, F.; Dimarogonas, D.V. Leader-Follower Formation Control with Prescribed Performance Guarantees. IEEE Trans. Control Netw. Syst 2021, 8, 450–461. [Google Scholar] [CrossRef]
- Wang, F.; Gao, H.; Wang, K.; Zhou, C.; Zong, Q.; Hua, C. Disturbance Observer-Based Finite-Time Control Design for a Quadrotor UAV with External Disturbance. IEEE Trans. Aerosp. Electron. Sys. 2021, 57, 834–847. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R. Antisaturation Adaptive Fixed-Time Sliding Mode Controller Design to Achieve Faster Convergence Rate and Its Application. IEEE Trans. Circuit Syst. II Express Briefs 2022, 69, 3555–3559. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yan, P. Symmetric Time-Variant IBLF-Based Tracking Control with Prescribed Performance for a Robot. Symmetry 2023, 15, 1919. https://doi.org/10.3390/sym15101919
Zhang T, Yan P. Symmetric Time-Variant IBLF-Based Tracking Control with Prescribed Performance for a Robot. Symmetry. 2023; 15(10):1919. https://doi.org/10.3390/sym15101919
Chicago/Turabian StyleZhang, Tan, and Pianpian Yan. 2023. "Symmetric Time-Variant IBLF-Based Tracking Control with Prescribed Performance for a Robot" Symmetry 15, no. 10: 1919. https://doi.org/10.3390/sym15101919
APA StyleZhang, T., & Yan, P. (2023). Symmetric Time-Variant IBLF-Based Tracking Control with Prescribed Performance for a Robot. Symmetry, 15(10), 1919. https://doi.org/10.3390/sym15101919