Next Article in Journal
LIBGRPP: A Library for the Evaluation of Molecular Integrals of the Generalized Relativistic Pseudopotential Operator over Gaussian Functions
Next Article in Special Issue
Analysis of the Mathematical Modelling of COVID-19 by Using Mild Solution with Delay Caputo Operator
Previous Article in Journal
Nuclear Structure Investigations of Even–Even Hf Isotopes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence and Ulam–Hyers Stability Results for a System of Coupled Generalized Liouville–Caputo Fractional Langevin Equations with Multipoint Boundary Conditions

by
Muath Awadalla
1,*,
Muthaiah Subramanian
2,* and
Kinda Abuasbeh
1
1
Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf 31982, Al Ahsa, Saudi Arabia
2
Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(1), 198; https://doi.org/10.3390/sym15010198
Submission received: 15 December 2022 / Revised: 5 January 2023 / Accepted: 6 January 2023 / Published: 9 January 2023
(This article belongs to the Special Issue Fractional-Order Systems and Its Applications in Engineering)

Abstract

:
We study the existence and uniqueness of solutions for coupled Langevin differential equations of fractional order with multipoint boundary conditions involving generalized Liouville–Caputo fractional derivatives. Furthermore, we discuss Ulam–Hyers stability in the context of the problem at hand. The results are shown with examples. Results are asymmetric when a generalized Liouville–Caputo fractional derivative ( ρ ) parameter is changed.

1. Introduction

The study of operators of fractional order, including integral and derivative, over either real or complex domains is the focus of fractional calculus. Due to its active development and applications in the fields of physics, mechanics, chemistry, engineering, etc., fractional differential equations (FDEs) have become a popular topic of study among scholars. The books [1,2,3,4,5,6,7] are recommended for readers interested in the systematic development of the topic. In mathematical physics, the Langevin equation (LE) is a potent tool for modelling anomalous diffusion and other phenomena in a systematic way. Harmonic oscillators, price index variations [8], and other related processes are examples of this type of process. The theory of critical dynamics also extensively makes use of a general Langevin equation for noise sources with correlations [9]. To comprehend the nature of the quantum noise, a generalized Langevin equation (GLE) [10] can be employed. The LE has a highly elegant and rich role in fractional systems, such as fractional reaction–diffusion systems [11,12]. It is suggested that the fractional analogue of the standard LE, also known as the stochastic differential equation, be used in cases where the separation between microscopic and macroscopic time scales is not obvious; see, for instance, [13]. For a GLE of fractional order of the Liouville–Caputo fractional derivative, the author of [14] investigated moments, variances, location, and velocity correlation. Comparisons were made between the outcomes and those obtained for the same GLE. The aforementioned papers [15,16,17,18,19,20,21] and their relevant references contain recent studies on the LE with varied boundary conditions. The study of fractional calculus has become a significant area of study because of the multiple applications it has in the technical sciences, social sciences, and engineering professions. Differential and integral operators based on a fractional order are thought to be more realistic and useful than their integer-order counterparts because they can show the history of ongoing phenomena and processes. Recently, the literature on the subject has included Hadamard, Caputo(Liouville–Caputo), Riemann–Liouville type derivatives, among others, as well as FDEs. See citations [22,23,24,25,26,27,28,29,30], as well as the references, for a few recent publications on the topic. The authors in [31] discussed the existence of solutions for Langevin FDEs using Liouville–Caputo derivatives:
c ρ D a + α ( c ρ D a + β + λ ) x ( t ) = f ( t , x ( t ) ) , t J : = [ a , T ] , λ R , 1 < α 2 , 0 < β < 1 , ρ > 0
x ( a ) = 0 , x ( η ) = 0 , x ( T ) = μ ρ I a + γ x ( ξ ) , γ > 0 , ρ > 0 ,
where c ρ D a + α , c ρ D a + β denote the generalized Liouville–Caputo fractional derivatives (GLCFD), ρ I a + γ is the generalized fractional integral (GFI). The main results were proven using a fixed-point index theory. Applications to differential equations in science inevitably lead to multipoint boundary value problems. A dynamical system with m degrees of freedom, for instance, might have exactly m examples that are seen at m different times. An m-point boundary value problem is a mathematical representation of such problems. Multipoint problems for differential equations are a subset of interface problems and are therefore amenable to a variety of solutions. The study of fractional differential equations with multipoint boundary conditions has attracted the interest of numerous researchers (see [32,33,34,35] and the references given therein). We demonstrate the existence, uniqueness of solutions and Ulam–Hyers stability for the following generalized Langevin fractional differential system with multipoint boundary conditions, which was inspired by previous research, by utilizing the fixed-point theorems:
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] ,
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ j = 1 k ς j y ( ϖ j ) , y ( S ) = π j = 1 k ϱ j x ( σ j ) , 0 < σ 1 < ϖ 1 < < σ k < ϖ k < S ,
where C ρ D 0 + ξ 1 , C ρ D 0 + ξ 2 , C ρ D 0 + ζ 1 , C ρ D 0 + ζ 2 are the GLCFD of order 1 < ξ 1 , ξ 2 2 , 0 < ζ 1 , ζ 2 < 1 , and f , g : E × R × R R are continuous functions, ϵ , π R . The requirement states that the unknown function’s value at the right endpoint of the specified interval, ι = S , must be proportional to its values on different multipoint values of unknown functions with σ j , ϖ j , j = 1 , 2 , k , where ς j , ϱ j , j = 1 , 2 , k are arbitrary constants. The GLCFD is converted into the differentially effective Caputo sense when ρ = 1 . It should be noticed that the multipoint strip boundary condition in (4) is new in the context of generalized Liouville–Caputo fractional differential equations and can be understood as the value of a known function at S being proportional to the discrete values of the unknown function at ϖ i , σ i , i = 1 , 2 , , k . By employing the fixed-point technique, we investigate the existence and uniqueness solutions of nonlocal generalized Liouville–Caputo fractional boundary value problem with discrete boundary conditions (3) and (4). Differently from the above mentioned works, we obtain the Ulam–Hyers stability solutions of the nonlocal boundary value problem of the generalized Liouville–Caputo type fractional differential Equations (3) and (4) by using conventional functional analysis. To the best of our knowledge, boundary value problems’ (BVPs) stability analysis is still in its early development. The fundamental contribution of this research is to investigate the existence of Ulam–Hyers stability solutions. In addition, we show the problems (3) and (4) used by the fixed-point theorems of Leray–Schauder and Banach to demonstrate the existence and uniqueness of the solutions. The remainder of the paper is structured as follows: In Section 2, we review some fundamental ideas of fractional calculus and find the integral solutions to the given problems’ linear versions. The existence results for problems (3) and (4) derived by using Leray–Schauder’s nonlinear alternative and Banach’s contraction mapping principle are presented in Section 3. Section 4 looks at the Ulam–Hyers stability of the provided systems (3) and (4) under particular circumstances. Examples are provided in Section 6 to further clarify the study’s findings.

2. Preliminaries

This section begins with the fundamental definitions of fractional calculus. Later, we demonstrate an auxiliary lemma that is crucial in formulating a fixed-point problem related to the topic at hand. We define space P = { x ( ι ) : x ( ι ) C ( E , R ) } equipped with the norm | | x | | = sup { | x ( ι ) | , ι E } as a Banach space. Moreover, Q = { y ( ι ) : y ( ι ) C ( E , R ) } equipped with the norm | | y | | = sup { | y ( ι ) | , ι E } is a Banach space. Then, the product space ( P × Q , | | ( x , y ) | | ) is also a Banach space with norm | | ( x , y ) | | = | | x | | + | | y | | .
 Definition 1
([36]). The left- and right-sided GFIs of f Z b y ( c , d ) of order ξ > 0 and ρ > 0 , for < c < ι < d < , are defined as follows:
( ρ I c + ξ f ) ( ι ) = ρ 1 ξ Γ ( ξ ) c ι θ ρ 1 ( ι ρ θ ρ ) 1 ξ f ( θ ) d θ ,
( ρ I d ζ f ) ( ι ) = ρ 1 ξ Γ ( ξ ) ι d θ ρ 1 ( θ ρ ι ρ ) 1 ξ f ( θ ) d θ .
 Definition 2
([37]). The generalized fractional derivatives (GFDs) which are associated with GFIs (5) and (6), for 0 c < ι < d < , are defined as follows:
( ρ D c + ζ f ) ( ι ) = ι 1 ρ d d ι n ( ρ I c + n ζ f ) ( ι ) = ρ ζ n + 1 Γ ( n ζ ) ι 1 ρ d d ι n c ι θ ρ 1 ( ι ρ θ ρ ) ζ n + 1 f ( θ ) d θ ,
( ρ D d ζ f ) ( ι ) = ι 1 ρ d d ι n ( ρ I d n ζ f ) ( ι ) = ρ ζ n + 1 Γ ( n ζ ) ι 1 ρ d d ι n ι d θ ρ 1 ( ι ρ θ ρ ) ζ n + 1 f ( θ ) d θ ,
if the integrals exist.
 Definition 3
([38]). The above GFDs define the left- and right-sided generalized Liouville–Caputo type fractional derivatives of f A C γ n [ c , d ] of order ζ 0
C ρ D c + ζ f ( z ) = ρ D c + ζ f ( ι ) k = 0 n 1 γ k f ( c ) k ! ι ρ c ρ ρ k ( z ) , γ = z 1 ρ d d z ,
C ρ D d ζ f ( z ) = ρ D d ζ f ( ι ) k = 0 n 1 ( 1 ) k γ k f ( d ) k ! d ρ ι ρ ρ k ( z ) , γ = z 1 ρ d d z ,
when n = [ ζ ] + 1 .
 Lemma 1
([38]). 1. If ζ N ,
C ρ D c + ζ f ( ι ) = 1 Γ ( n ζ ) c ι ι ρ θ ρ ρ n ζ 1 ( γ n f ) ( θ ) d θ θ 1 ρ = ρ I c + n ζ ( γ n f ) ( ι ) ,
C ρ D d ζ f ( ι ) = 1 Γ ( n ζ ) ι d θ ρ ι ρ ρ n ζ 1 ( 1 ) n ( γ n f ) ( θ ) d θ θ 1 ρ = ρ I d n ζ ( γ n f ) ( ι ) .
2. If ζ N ,
C ρ D c + ζ f = γ n f , C ρ D d ζ f = ( 1 ) n γ n f .
 Lemma 2
([38]). Let f A C γ n [ c , d ] or C γ n [ c , d ] and ζ R . Then,
ρ I c + ζ C ρ D c + ζ f ( ι ) = f ( ι ) k = 0 n 1 γ k f ( c ) k ! ι ρ c ρ ρ k ,
ρ I d ζ C ρ D d ζ f ( ι ) = f ( ι ) k = 0 n 1 ( 1 ) k γ k f ( d ) k ! d ρ ι ρ ρ k .
In particular, for 0 < ζ 1 , we have
ρ I c + ζ C ρ D c + ζ f ( ι ) = f ( ι ) f ( c ) , ρ I d ζ C ρ D d ζ f ( ι ) = f ( ι ) f ( d ) .
In order to facilitate the computation, we present the following notations:
E 1 ^ = S ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) , E 2 ^ = π j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
E 1 = S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) , E 2 = ϵ j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
G = E 1 ^ E 2 E 1 E 2 ^ 0 ,
δ 1 ( ι ) = ι ρ ζ 1 ρ ζ 1 Γ ζ 1 + 1 G , δ 2 ( ι ) = ι ρ ζ 2 ρ ζ 2 Γ ζ 2 + 1 G .
 Lemma 3.
Let f ^ , g ^ C ( 0 , S ) L ( 0 , S ) , x , y A C γ 2 ( E ) , and Λ 0 . The solution of the system of coupled Langevin fractional BVP:
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ^ ( ι ) , ι E : = [ 0 , S ] , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ^ ( ι ) , ι E : = [ 0 , S ] , x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ j = 1 k ς j y ( ϖ j ) , y ( S ) = π j = 1 k ϱ j x ( σ j ) , 0 < σ 1 < ϖ 1 < < σ k < ϖ k < S ,
is given by
x ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ^ ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ]
and
y ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ^ ( ι ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + δ 2 ( ι ) [ E 2 ^ ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 ^ π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] .
 Proof. 
Applying operators ρ I 0 + ξ 1 , ρ I 0 + ξ 2 to (18) and using Lemma 2, we get
( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = ρ I 0 + ξ 1 f ^ ( ι ) + a 1 ,
( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = ρ I 0 + ξ 2 g ^ ( ι ) + b 1 ,
respectively, for some a 1 , b 1 R . When ρ I 0 + ζ 1 , ρ I 0 + ζ 2 are applied to the FDEs in (21) and (22), the solution of the Langevin FDEs in (18) for ι E is
x ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ^ ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + a 1 ι ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) + a 2 ,
y ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ^ ( ι ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + b 1 ι ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + b 2 ,
respectively, for some a 2 , b 2 R . By utilizing the conditions x ( 0 ) = y ( 0 ) = 0 in (23) and (24), respectively, we get a 2 = b 2 = 0 . Then, using the multipoint boundary conditions, we get:
j = 1 k ϱ j x ( σ j ) = j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) + a 1 j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
j = 1 k ς j y ( ϖ j ) = j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) + b 1 j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
which, when combined with the boundary conditions x ( S ) = ϵ j = 1 k y ( ϖ j ) , y ( S ) = π j = 1 k x ( σ j ) , gives the following results:
ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) ϕ 1 ρ I 0 + ζ 1 x ( S ) + a 1 S ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) = ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) + b 1 ϵ j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) ϕ 2 ρ I 0 + ζ 2 y ( S ) + b 1 S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) = π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) + a 1 π j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) .
Next, we obtain
a 1 E 1 ^ b 1 E 1 = ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ,
b 1 E 2 a 2 E 2 ^ = π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ,
using the notations (15) in (27) and (28), respectively. When the system of equations is solved, we find that (29) and (30) for a 1 and b 1 are
a 1 = 1 G [ E 2 ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] ,
b 1 = 1 G [ E 2 ^ ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ^ ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 ^ π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ^ ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] .
Substituting the values of a 1 , b 1 in (23) and (24), respectively, we obtain the BVP solution (18). □

3. Main Results

We propose a fixed-point problem relevant to the problem in Lemma 3 as follows: Ψ : P × Q P × Q by
Ψ ( x , y ) ( ι ) = ( Ψ 1 ( x , y ) ( ι ) , Ψ 2 ( x , y ) ( ι ) ) ,
where
Ψ 1 ( x , y ) ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ( ι , x ( ι ) , y ( ι ) ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ( ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ( ϖ j , x ( ϖ j ) , y ( ϖ j ) ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ( S , x ( S ) , y ( S ) ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ( π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ( σ j , x ( σ j ) , y ( σ j ) ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ( S , x ( S ) , y ( S ) ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] ,
Ψ 2 ( x , y ) ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ( ι , x ( ι ) , y ( ι ) ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + δ 2 ( ι ) [ E 2 ^ ( ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 g ( ϖ j , x ( ϖ j ) , y ( ϖ j ) ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 f ( S , x ( S ) , y ( S ) ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ^ ( π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 f ( σ j , x ( σ j ) , y ( σ j ) ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 g ( S , x ( S ) , y ( S ) ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] .
For brevity, we use these notations:
U 1 = S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) ,
V 1 = | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) ,
U 1 ^ = | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
V 1 ^ = | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
U 2 = | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) ,
V 2 = ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) ,
U 2 ^ = | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
V 2 ^ = | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
Φ = min { 1 [ ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ ] , 1 [ ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ ] } .
Let f , g : E × R × R R be continuous functions.
  • ( A 1 ) there exist constants ψ m , ψ m ^ 0 ( m = 1 , 2 ) and ψ 0 , ψ 0 ^ > 0 such that
    | f ( ι , o 1 , o 2 ) | ψ 0 + ψ 1 | o 1 | + ψ 2 | o 2 | , | g ( ι , o 1 , o 2 ) | ψ 0 ^ + ψ 1 ^ | o 1 | + ψ 2 ^ | o 2 | , o m R , m = 1 , 2 .
  • ( A 2 ) there exist constants ψ m , ψ m ^ 0 ( m = 1 , 2 ) such that
    | f ( ι , o 1 , o 2 ) f ( ι , o ^ 1 , o ^ 2 ) | ψ 1 | o 1 o ^ 1 | + ψ 2 | o 2 o ^ 2 | , | g ( ι , o 1 , o 2 ) g ( ι , o ^ 1 , o ^ 2 ) | ψ 1 ^ | o 1 o ^ 1 | + ψ 2 ^ | o 2 o ^ 2 | , o m , o ^ m R , m = 1 , 2 .
 Theorem 1.
If the assumption ( A 1 ) is satisfied, then the problem in (3) and (4) has at least one solution on E if ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ < 1 , ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ < 1 , where U 1 , V 1 , U 1 ^ , V 1 ^ , U 2 , V 2 , U 2 ^ , V 2 ^ are given by (36)–(43), respectively.
 Proof. 
In the first phase, we define operator Ψ : P × Q P × Q as being completely continuous. The operators Ψ 1 and Ψ 2 are continuous because the functions f and g are continuous. The operator Ψ is continuous as a result. For the purpose of illustrating how the uniformly bounded operator Ψ works, consider the bounded set Ψ P × Q . Then, N 1 ^ and N 2 ^ are positive constants such that | f ( ι , x ( ι ) , y ( ι ) ) | N 1 ^ , | g ( ι , x ( ι ) , y ( ι ) ) | N 2 ^ , ( x , y ) Ψ . Then, we have
| Ψ 1 ( x , y ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x ( ι ) , y ( ι ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 | g ( ϖ j , x ( ϖ j ) , y ( ϖ j ) ) | + | ϵ | | ϕ 2 | j = 1 k ς j ρ I 0 + ζ 2 | y ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 | f ( σ j , x ( σ j ) , y ( σ j ) ) | + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x ( S ) , y ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] N ^ 1 S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + N 2 ^ | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) y ,
when taking the norm and using (36)–(39), which yields for ( x , y ) Ψ ,
| | Ψ 1 ( x , y ) | | U 1 N ^ 1 + U 1 ^ x + V 1 N ^ 2 + V 1 ^ y .
Likewise, we obtain
| | Ψ 2 ( x , y ) | | N 2 ^ ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + N 1 ^ | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) y + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) x U 2 N ^ 1 + U 2 ^ x + V 2 N ^ 2 + V 2 ^ y ,
using (40)–(43). We may infer that Ψ 1 and Ψ 2 are uniformly bounded based on the inequalities (45) and (46), which means that the operator Ψ is also uniformly bounded. Following that, we demonstrate that Ψ is equicontinuous. Let ι 1 , ι 2 E with ι 1 < ι 2 . Then, we have
| Ψ 1 ( x , y ) ( ι 2 ) Ψ 1 ( x , y ) ( ι 1 ) | | ρ I 0 + ξ 1 + ζ 1 f ( ι 2 , x ( ι 2 ) , y ( ι 2 ) ) ρ I 0 + ξ 1 + ζ 1 f ( ι 1 , x ( ι 1 ) , y ( ι 1 ) ) | + | ϕ 1 | | ρ I 0 + ζ 1 x ( ι 2 ) ρ I 0 + ζ 1 x ( ι 1 ) | + | δ 1 ( ι 2 ) δ 1 ( ι 1 ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 | g ( ϖ j , x ( ϖ j ) , y ( ϖ j ) ) | + | ϵ | | ϕ 2 | j = 1 k ς j ρ I 0 + ζ 2 | y ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 | f ( σ j , x ( σ j ) , y ( σ j ) ) | + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x ( S ) , y ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] ρ 1 ( ξ 1 + ζ 1 ) N 1 ^ Γ ( ξ 1 + ζ 1 ) | 0 ι 1 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ξ 1 + ζ 1 ) θ ρ 1 ( ι 1 ρ θ ρ ) 1 ( ξ 1 + ζ 1 ) d θ + ι 1 ι 2 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) d θ | ρ 1 ( ζ 1 ) x Γ ( ζ 1 ) | 0 ι 1 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) θ ρ 1 ( ι 1 ρ θ ρ ) 1 ( ζ 1 ) d θ + ι 1 ι 2 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) d θ | + | δ 1 ( ι 2 ) δ 1 ( ι 1 ) | [ N ^ 1 S ρ ( ξ 1 + ζ 1 ) ( | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + N 2 ^ | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) y ] 0 a s ι 2 ι 1 .
independent of ( x , y ) with respect to | f ( ι , x ( ι 1 ) , y ( ι 1 ) ) | N 1 ^ and | g ( ι , x ( ι 1 ) , y ( ι 1 ) ) | N 2 ^ . Similarly, we can express | Ψ 2 ( x , y ) ( ι 2 ) Ψ 2 ( x , y ) ( ι 1 ) | 0 as ι 2 ι 1 independent of ( x , y ) in terms of the boundedness of f and g. The operator Ψ is equicontinuous due to the equicontinuity of Ψ 1 and Ψ 2 . The operator is compact as a result of the Arzela–Ascoli theorem. Finally, we show that the set Π ( Ψ ) = { ( x , y ) P × Q : λ Ψ ( x , y ) ; 0 < λ < 1 } is bounded. Let ( x , y ) Π ( Ψ ) . Then, ( x , y ) = λ Ψ ( x , y ) . For any ι E , we have x ( ι ) = λ Ψ 1 ( x , y ) ( ι ) , y ( ι ) = λ Ψ 2 ( x , y ) ( ι ) . By utilizing ( A 1 ) in (34), we obtain
| x ( ι ) | ρ I 0 + ξ 1 + ζ 1 ( ψ 0 , ψ 1 | x ( ι ) | , ψ 2 | y ( ι ) | ) + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 ( ψ 0 ^ + ψ 1 ^ | x ( ϖ j ) | + ψ 2 ^ | y ( ϖ j ) | ) + | ϵ | | ϕ 2 | j = 1 k ς j ρ I 0 + ζ 2 | y ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 ( ψ 0 , ψ 1 | x ( S ) | , ψ 2 | y ( S ) | ) + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 ( ψ 0 , ψ 1 | x ( σ j ) | , ψ 2 | y ( σ j ) | ) + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 ( ψ 0 ^ + ψ 1 ^ | x ( S ) | + ψ 2 ^ | y ( S ) | ) + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] ,
which is obtained when the norm for ι E is taken,
| | x | | ( ψ 0 + ψ 1 | | x | | + ψ 2 | | y | | ) U 1 + ( ψ 0 ^ + ψ 1 ^ | | x | | + ψ 2 ^ | | y | | ) V 1 + x U 1 ^ + y V 1 ^ .
Likewise, we have the ability to get
| | y | | ( ψ 0 ^ + ψ 1 ^ | | x | | + ψ 2 ^ | | y | | ) V 2 + ( ψ 0 + ψ 1 | | x | | + ψ 2 | | y | | ) U 2 + x U 2 ^ + y V 2 ^ .
From (48) and (49), we get
| | x | | + | | y | | = ψ 0 ( U 1 + U 2 ) + ψ 0 ^ ( V 1 + V 2 ) + | | x | | ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ + | | y | | ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ ,
which results, with | | ( x , y ) | | = | | x | | + | | y | | , in
| | ( x , y ) | | ψ 0 ( U 1 + U 2 ) + ψ 0 ^ ( V 1 + V 2 ) Φ .
Thus, Π ( Ψ ) is bounded. Hence the operator Ψ has a fixed point by Leray–Schauder’s nonlinear alternative [39], which corresponds to at least one solution of the problem in (3) and (4) on E . □
 Theorem 2.
If the assumption ( A 2 ) is satisfied, then the problem in (3) and (4) has a unique solution on E , and there exist S 1 , S 2 > 0 such that | f ( ι , 0 , 0 ) | S 1 , | g ( ι , 0 , 0 ) | S 2 , Then, given that
( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) < 1 ,
where U 1 , V 1 , U 1 ^ , V 1 ^ , U 2 , V 2 , U 2 ^ , V 2 ^ are given by (36)–(43), respectively.
 Proof. 
Let us fix φ ( U 1 + U 2 ) S 1 + ( V 1 + V 2 ) S 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) and demonstrate that Ψ B φ B φ when operator Ψ is given by (33) and B φ = { ( x , y ) P × Q : | | ( x , y ) | | φ } . For ( x , y ) B φ , ι E
| f ( ι , x ( ι ) , y ( ι ) ) | ψ 1 | x ( ι ) | + ψ 2 | y ( ι ) | + S 1 ψ 1 | | x | | + ψ 2 | | y | | + S 1 ,
and
| g ( ι , x ( ι ) , y ( ι ) ) | ψ 1 ^ | x ( ι ) | + ψ 2 ^ | y ( ι ) | + S 2 ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 .
This leads to
| Ψ 1 ( x , y ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x ( ι ) , y ( ι ) ) f ( ι , 0 , 0 ) | + | f ( ι , 0 , 0 ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 | g ( ( ϖ j , x ( ϖ j ) , y ( ϖ j ) ) g ( ϖ j , 0 , 0 ) | + | g ( ϖ j , 0 , 0 ) | ) + | ϵ | | ϕ 2 | j = 1 k ς j ρ I 0 + ζ 2 | y ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) f ( S , 0 , 0 ) | + | f ( S , 0 , 0 ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 | f ( σ j , x ( σ j ) , y ( σ j ) ) f ( σ j , 0 , 0 ) | + | f ( σ j , 0 , 0 ) | + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 | g ( ( S , x ( S ) , y ( S ) ) g ( S , 0 , 0 ) | + | g ( S , 0 , 0 ) | ) + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) y
| | Ψ 1 ( x , y ) | | ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) U 1 + ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) V 1 + x U 1 ^ + y V 1 ^ .
Similarly, we obtain
| Ψ 2 ( x , y ) ( ι ) | ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) y + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) x | | Ψ 2 ( x , y ) | | ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) K 2 + ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) J 2 + x U 2 ^ + y V 2 ^ .
As a result, (52) and (53) follow | | Ψ ( x , y ) | | φ , and thus Ψ B φ B φ . Now, for ( x 1 , y 1 ) , ( x 2 , y 2 ) P × Q and any ι E , we get
| Ψ 1 ( x 1 , y 1 ) ( ι ) Ψ 1 ( x 2 , y 2 ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x 1 ( ι ) , y 1 ( ι ) ) f ( ι , x 2 ( ι ) , y 2 ( ι ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x 1 ( ι ) x 2 ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 | g ( ϖ j , x 1 ( ϖ j ) , y 1 ( ϖ j ) ) g ( ϖ j , x 2 ( ϖ j ) , y 2 ( ϖ j ) ) | + | ϵ | | ϕ 2 | j = 1 k ϱ j ρ I 0 + ζ 2 | y 1 ( ϖ j ) y 2 ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x 1 ( S ) , y 1 ( S ) ) f ( S , x 2 ( S ) , y 2 ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x 1 ( S ) x 2 ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 | f ( σ j , x 1 ( σ j ) , y 1 ( σ j ) ) f ( σ j , x 2 ( σ j ) , y 2 ( σ j ) ) | + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x 1 ( σ j ) x 2 ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x 1 ( S ) , y 1 ( S ) ) g ( S , x 2 ( S ) , y 2 ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y 1 ( S ) y 2 ( S ) | ) ] ( ψ 1 | | x 1 x 2 | | + ψ 2 | | y 1 y 2 | | ) S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + ( ψ 1 ^ | | x 1 x 2 | | + ψ 2 ^ | | y 1 y 2 | | ) | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) | | x 1 x 2 | | + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) | | y 1 y 2 | |
( U 1 ( ψ 1 + ψ 2 ) + V 1 ( ψ 1 ^ + ψ 2 ^ ) + U 1 ^ + V 1 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Similarly, we obtain
| Ψ 2 ( x 1 , y 1 ) ( ι ) Ψ 2 ( x 2 , y 2 ) ( ι ) | ( ψ 1 ^ | | x 1 x 2 | | + ψ 2 ^ | | y 1 y 2 | | ) ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + ( ψ 1 | | x 1 x 2 | | + ψ 2 | | y 1 y 2 | | ) | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) | | y 1 y 2 | | + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) | | x 1 x 2 | | ( U 2 ( ψ 1 + ψ 2 ) + V 2 ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ + V 2 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Thus, we obtain
| | Ψ 1 ( x 1 , y 1 ) ( ι ) Ψ 1 ( x 2 , y 2 ) ( ι ) | | ( U 1 ( ψ 1 + ψ 2 ) + V 1 ( ψ 1 ^ + ψ 2 ^ ) + U 1 ^ + V 1 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
In a similar manner,
| | Ψ 2 ( x 1 , y 1 ) ( ι ) Ψ 2 ( x 2 , y 2 ) ( ι ) | | ( U 2 ( ψ 1 + ψ 2 ) + V 2 ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ + V 2 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Hence, using (54) and (55) we can get
| | Ψ ( x 1 , y 1 ) ( ι ) Ψ ( x 2 , y 2 ) ( ι ) | | ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
As a consequence of condition ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) < 1 , Ψ is a contraction operator. Hence, the operator has a unique fixed point by Banach’s contraction principle [39], which corresponds to a unique solution of the problem in (3) and (4). □

4. Example

Consider the following system of coupled generalized Liouville–Caputo type Langevin FDEs:
C 39 50 D 0 + 63 50 ( C 39 50 D 0 + 3 5 + 1 100 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , 1 ] , C 39 50 D 0 + 44 25 ( C 39 50 D 0 + 17 20 + 1 150 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , 1 ] ,
augmented with boundary conditions
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( 1 ) = 9 50 j = 1 k ς j y ( ϖ j ) , y ( 1 ) = 4 25 j = 1 k ϱ j x ( σ j ) ,
where ξ 1 = 63 50 , ξ 2 = 44 25 , ζ 1 = 3 5 , ζ 2 = 17 20 , ρ = 39 50 , S = 1 , ϵ = 9 50 , π = 4 25 , ϖ 1 = 8 25 , ϖ 2 = 21 50 , ϖ 3 = 13 25 , ϖ 4 = 31 50 , σ 1 = 7 20 , σ 2 = 9 20 , σ 3 = 11 20 , σ 4 = 13 20 , ς 1 = 6 25 , ς 2 = 17 50 , ς 3 = 11 25 , ς 4 = 12 25 , ϱ 1 = 7 50 , ϱ 2 = 4 25 , ϱ 3 = 1 5 , ϱ 4 = 11 50 , and
f ( ι , x ( ι ) , y ( ι ) ) = ( ι + 1 ) 200 | y ( ι ) | 1 + | y ( ι ) | + 1 4 cos ( x ( ι ) ) + 5 ι ,
g ( ι , x ( ι ) , y ( ι ) ) = e ι 100 1 + ι 4 + 1 7 cos ( y ( ι ) ) + | x ( ι ) | 3 ( 1 + | x ( ι ) | ) .
with ψ 0 = 1 40 , ψ 1 = 1 800 , ψ 2 = 1 200 , ψ 0 ^ = 1 400 , ψ 1 ^ = 1 300 , and ψ 2 ^ = 1 700 , using condition ( A 1 ) . Next, we find that U 1 = 7.17720698699361 , V 1 = 15.76278111144004 , U 2 = 3.062775121234468 , V 2 = 17.146905979118152 , U 1 ^ = 0.06427770462505382 , V 1 ^ = 0.12551798367318132 , U 2 ^ = 0.030350664250901854 , V 2 ^ = 0.1356913209638917 , U i , V i , U i ^ , V i ^ ( i = 1 , 2 ) are, respectively, given by (36)–(43). Thus, ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ 0.21712730347976808 < 1 , ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ 0.35942305387901086 < 1 , and there is at least one solution for the problem in (56) and (57) on [ 0 , 1 ] with f and g, which are, respectively, given by (58) and (59). Additionally, all of the requirements of Theorem 1 have been satisfied.
Moreover, we employ
f ( ι , x ( ι ) , y ( ι ) ) = ι 20 + 1 500 | y ( ι ) | 1 + | y ( ι ) | + 3 800 cos ( x ( ι ) ) ,
g ( ι , x ( ι ) , y ( ι ) ) = ( e ι + 1 ) 50 + 1 400 cos ( y ( ι ) ) + 1 700 | x ( ι ) | 1 + | x ( ι ) | ,
to illustrate Theorem 2. Using assumption ( A 2 ) with ψ 1 = 3 800 , ψ 2 = 1 500 , ψ 1 ^ = 1 700 , and ψ 2 ^ = 1 400 . The assumptions of Theorem 2 are also satisfied with ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) 0.5440056270625331 < 1 . Consequently, there exists a unique solution on [ 0 , 1 ] to the problem in (56) and (57) with f and g supplied by (60) and (62), respectively, according to Theorem 2.
For brevity, we use these notations:
U 1 = S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
V 1 = | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,
U 2 = | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) ,
V 2 = ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) ,

5. Ulam–Hyers Stability Results

With the help of an integral formulation of the solution provided by
x ( ι ) = Ψ 1 ( x , y ) ( ι ) , y ( ι ) = Ψ 2 ( x , y ) ( ι ) ,
where Ψ 1 and Ψ 2 are given by (34) and (35), we analyse the Ulam–Hyers stability for problem (3) in this section. Consider the following definitions of nonlinear operators
H 1 , H 2 C ( E , R ) × C ( E , R ) C ( E , R ) ,
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) f ( ι , x ( ι ) , y ( ι ) ) = H 1 ( x , y ) ( ι ) , ι E , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) g ( ι , x ( ι ) , y ( ι ) ) = H 1 ( x , y ) ( ι ) , ι E .
For some λ 1 ^ , λ ^ 2 > 0 , taking into consideration the following inequality
| | H 1 ( x , y ) | | λ 1 ^ , | | H 2 ( x , y ) | | λ 2 ^ ,
 Definition 4.
The system in (3) and (4) is UHS if V 1 , V 2 > 0 and a unique solution ( x , y ) C ( E , R ) of the problem in (3) and (4) with
| | ( x , y ) ( x * , y * ) | | V 1 λ 1 ^ + V 2 λ 2 ^ ,
( x , y ) C ( E , R ) of inequality (67).
 Theorem 3.
If assumption ( A 2 ) is satisfied, then the BVP (3) and (4) is UHS.
 Proof. 
Let ( x , y ) C ( E , R ) × C ( E , R ) be the solution of the BVP (3) and (4) satisfying (34) and (35). Let ( x , y ) be any solution satisfying (67):
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) + H 1 ( x , y ) ( ι ) , ι E , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) + H 1 ( x , y ) ( ι ) , ι E ,
thus,
x * ( ι ) = Ψ 1 ( x * , y * ) ( ι ) + ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ( ϵ j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 H 2 ( x , y ) ( ϖ j ) ϵ ϕ 2 j = 1 k ς j ρ I 0 + ζ 2 y ( ϖ j ) ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ( π j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( σ j ) π ϕ 1 j = 1 k ϱ j ρ I 0 + ζ 1 x ( σ j ) ρ I 0 + ξ 2 + ζ 2 H 2 ( x , y ) ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] .
It follows that
| Ψ 1 ( x * , y * ) ( ι ) x * ( ι ) | ρ I 0 + ξ 1 + ζ 1 | H 1 ( x , y ) ( ι ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | j = 1 k ς j ρ I 0 + ξ 2 + ζ 2 | H 2 ( x , y ) ( ϖ j ) | + | ϵ | | ϕ 2 | j = 1 k ς j ρ I 0 + ζ 2 | y ( ϖ j ) | + ρ I 0 + ξ 1 + ζ 1 | H 1 ( x , y ) ( S ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | j = 1 k ϱ j ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( σ j ) + | π | | ϕ 1 | j = 1 k ϱ j ρ I 0 + ζ 1 | x ( σ j ) | + ρ I 0 + ξ 2 + ζ 2 | H 2 ( x , y ) ( S ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] λ ^ 1 { S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) } + λ ^ 2 { | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) } U 1 λ 1 ^ + V 1 λ 2 ^ .
Similarly, we obtain
| Ψ 2 ( x * , y * ) ( ι ) y * ( ι ) | λ 2 ^ { ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | j = 1 k ς j ϖ j ρ ( ζ 2 ) ρ ζ 2 Γ ( ζ 2 + 1 ) } + λ 1 ^ { | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ξ 1 + ζ 1 ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | j = 1 k ϱ j σ j ρ ( ζ 1 ) ρ ζ 1 Γ ( ζ 1 + 1 ) } U 2 λ ^ 1 + V 2 λ ^ 2 ,
where U 1 , V 1 , U 2 , and V 2 are defined in (62)–(65), respectively. Consequently, based on the fixed-point property of the operator Ψ , provided in (34) and (35), we derive
| x ( ι ) x * ( ι ) | = | x ( ι ) Ψ 1 ( x * , y * ) ( ι ) + Ψ 1 ( x * , y * ) ( ι ) x * ( ι ) | | Ψ 1 ( x , y ) ( ι ) Ψ 1 ( x * , y * ) ( ι ) | + | Ψ 1 ( x * , y * ) ( ι ) x * ( ι ) | ( ( U 1 ψ 1 + V 1 ψ 1 ^ ) + ( U 1 ψ 2 + V 1 ψ 2 ^ ) ) | | ( x , y ) ( x * , y * ) | | + U 1 λ 1 ^ + V 1 λ 2 ^ .
| y ( ι ) y * ( ι ) | = | y ( ι ) Ψ 2 ( x * , y * ) ( ι ) + Ψ 2 ( x * , y * ) ( ι ) y * ( ι ) | | Ψ 2 ( x , y ) ( ι ) Ψ 2 ( x * , y * ) ( ι ) | + | Ψ 2 ( x * , y * ) ( ι ) y * ( ι ) | ( ( U 2 ψ 1 + V 2 ψ 1 ^ ) + ( U 2 ψ 2 + V 2 ψ 2 ^ ) ) | | ( x , y ) ( x * , y * ) | | + U 2 λ 1 ^ + V 2 λ 2 ^ .
From the above equations (68) and (69) it follows that
| | ( x , y ) ( x * , y * ) | | ( U 1 + U 2 ) λ 1 ^ + ( V 1 + V 2 ) λ 2 ^ + ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) | | ( x , y ) ( x * , y * ) | | .
| | ( x , y ) ( x * , y * ) | | ( U 1 + U 2 ) λ 1 ^ + ( V 1 + V 2 ) λ 2 ^ 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) V 1 λ 1 ^ + V 2 λ 2 ^ ,
with
V 1 = U 1 + U 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) ,
V 2 = V 1 + V 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) .
Thus, the BVP (3) and (4) is UHS. □

6. Example

Consider the following system of coupled generalized Liouville–Caputo type Langevin FDEs:
C 39 50 D 0 + 63 50 ( C 39 50 D 0 + 3 5 + 1 100 ) x ( ι ) = ι 30 + 1 40 ( 16 + ι ) | y ( ι ) | 1 + | y ( ι ) | + 4 900 cos ( x ( ι ) ) , ι [ 0 , 1 ] , C 39 50 D 0 + 44 25 ( C 39 50 D 0 + 17 20 + 1 150 ) y ( ι ) = ι 70 + 1 400 cos ( y ( ι ) ) + 1 800 | x ( ι ) | 1 + | x ( ι ) | , ι [ 0 , 1 ] ,
augmented with boundary conditions:
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( 1 ) = 9 50 j = 1 k ς j y ( ϖ j ) , y ( 1 ) = 4 25 j = 1 k ϱ j x ( σ j ) ,
where ξ 1 = 63 50 , ξ 2 = 44 25 , ζ 1 = 3 5 , ζ 2 = 17 20 , ρ = 39 50 , S = 1 , ϵ = 9 50 , π = 4 25 , ϖ 1 = 8 25 , ϖ 2 = 21 50 , ϖ 3 = 13 25 , ϖ 4 = 31 50 , σ 1 = 7 20 , σ 2 = 9 20 , σ 3 = 11 20 , σ 4 = 13 20 , ς 1 = 6 25 , ς 2 = 17 50 , ς 3 = 11 25 , ς 4 = 12 25 , ϱ 1 = 7 50 , ϱ 2 = 4 25 , ϱ 3 = 1 5 , ϱ 4 = 11 50 and
| f ( ι , x 1 ( ι ) , y 1 ( ι ) ) f ( ι , x 2 ( ι ) , y 2 ( ι ) ) | = 4 900 | x 1 ( ι ) x 2 ( ι ) | + 1 640 | y 1 ( ι ) y 2 ( ι ) | ,
| g ( ι , x 1 ( ι ) , y 1 ( ι ) ) g ( ι , x 2 ( ι ) , y 2 ( ι ) ) | = 1 800 | x 1 ( ι ) x 2 ( ι ) | + 1 400 | y 1 ( ι ) y 2 ( ι ) | .
with ψ 1 = 4 900 , ψ 2 = 1 640 , ψ 1 ^ = 1 800 , and ψ 2 ^ = 1 400 , and using condition ( A 2 ) . Next, we find that U 1 = 7.241484691618664 , V 1 = 15.88829909511322 , U 2 = 3.0931257854853698 , V 2 = 17.282597300082045 , U i , V i are, respectively, given by (62)–(65). Thus, ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) 0.18647029247291969 < 1 . Consequently, there exists a unique solution on [ 0 , 1 ] , to the problem in (70) and (71), which is stable for Ulam–Hyers, with f and g supplied by (72) and (73), respectively, according to Theorem 3.

7. Asymmetric Case

 Remark 1.
If ρ = 1 , the problem (3)’s generalized Langevin FDEs reduces to the Caputo Langevin FDEs.
C D 0 + ξ 1 ( C D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] , C D 0 + ξ 2 ( C D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] .

8. Conclusions

We discussed the existence and uniqueness of solutions for a Langevin coupled system of fractional order involving generalised Liouville–Caputo type and multipoint boundary conditions in our contribution. To get at our result, we used the Leray–Schauder and Banach fixed-point theorems, and we included examples to help explain our study results. By using a conventional functional analysis, we demonstrated Ulam–Hyers stability. Our findings in this context are original and contribute to the body of knowledge on generalised fractional integral operators that are used to resolve generalised fractional differential equations of coupled Langevin systems with nonlocal multipoint boundary conditions. We highlighted the topic’s asymmetries in the remarks. The form of the solution in these kinds of statements can be used to conduct additional research on the positive solution and its asymmetry.

Author Contributions

Conceptualization, M.S.; formal analysis, M.A. and M.S.; methodology, M.A., M.S. and K.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 2224).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Klafter, J.; Lim, S.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
  2. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
  3. Valerio, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef] [Green Version]
  4. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
  5. Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  6. Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Soviet Math. Dokl. 1969, 10, 398–400. [Google Scholar]
  7. Ciegis, R.; Bugajev, A. Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control. 2012, 17, 253–270. [Google Scholar] [CrossRef] [Green Version]
  8. Vinales, A.D.; Esposito, M.A. Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle. Phys. Rev. E 2006, 73, 016111. [Google Scholar] [CrossRef] [Green Version]
  9. Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435–479. [Google Scholar] [CrossRef]
  10. Metiu, H.; Schon, G. Description of Quantum noise by a Langevin equation. Phys. Rev. Lett. 1984, 53, 13. [Google Scholar] [CrossRef]
  11. Datsko, B.; Gafiychuk, V. Complex nonlinear dynamics in subdiffusive activator–inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1673–1680. [Google Scholar] [CrossRef]
  12. Datsko, B.; Gafiychuk, V. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fract. Calc. Appl. Anal. 2018, 21, 237–253. [Google Scholar] [CrossRef] [Green Version]
  13. West, B.J.; Picozzi, S. Fractional Langevin model of memory in financial time series. Phys. Rev. E 2002, 65, 037106. [Google Scholar] [CrossRef]
  14. Fa, K.S. Fractional Langevin equation and Riemann-Liouville fractional derivative. Eur. Phys. J. E 2007, 24, 139–143. [Google Scholar]
  15. Theswan, S.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions. Symmetry 2022, 14, 1948. [Google Scholar] [CrossRef]
  16. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
  17. Wang, G.; Zhang, L.; Song, G. Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl. 2012, 2012, 200. [Google Scholar] [CrossRef] [Green Version]
  18. Ahmad, B.; Ntouyas, S.K. New existence results for differential inclusions involving Langevin equation with two indices. J. Nonlinear Convex Anal. 2013, 14, 437–450. [Google Scholar]
  19. Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations. Adv. Differ. Equ. 2017, 2017, 63. [Google Scholar] [CrossRef] [Green Version]
  20. Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
  21. Ahmad, B.; Alsaedi, A.; Salem, S. On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders. Adv. Differ. Equ. 2019, 2019, 57. [Google Scholar] [CrossRef] [Green Version]
  22. Arefin, M.A.; Sadiya, U.; Inc, M.; Uddin, M.H. Adequate soliton solutions to the space–time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 2022, 54, 309. [Google Scholar] [CrossRef]
  23. Khatun, M.A.; Arefin, M.A.; Uddin, M.H.; Inc, M.; Akbar, M.A. An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean. Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
  24. Sadiya, U.; Inc, M.; Arefin, M.A.; Uddin, M.H. Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 2022, 16, 594–607. [Google Scholar] [CrossRef]
  25. Duraisamy, P.; Gopal, T.N.; Subramanian, M. Analysis of fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions. Fract. Calc. Appl. Anal. 2020, 23, 1401–1415. [Google Scholar] [CrossRef]
  26. Rahmani, A.; Du, W.S.; Khalladi, M.T.; Kostić, M.; Velinov, D. Proportional Caputo Fractional Differential Inclusions in Banach Spaces. Symmetry 2022, 14, 1941. [Google Scholar] [CrossRef]
  27. Baleanu, D.; Hemalatha, S.; Duraisamy, P.; Pandian, P.; Muthaiah, S. Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Math. 2021, 6, 13004–13023. [Google Scholar] [CrossRef]
  28. Subramanian, M.; Kumar, A.V.; Gopal, T.N. A fundamental approach on non-integer order differential equation using nonlocal fractional sub-strips boundary conditions. Discontinuity Nonlinearity Complex. 2019, 8, 187–197. [Google Scholar] [CrossRef]
  29. Awadalla, M.; Subramanian, M.; Abuasbeh, K.; Manigandan, M. On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions. Symmetry 2022, 14, 2273. [Google Scholar] [CrossRef]
  30. Subramanian, M.; Aljoudi, S. Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative. Fractal Fract. 2022, 6, 629. [Google Scholar] [CrossRef]
  31. Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Srivastava, H.M.; Ntouyas, S.K. The Langevin equation in terms of generalized Liouville–Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral. Mathematics 2019, 7, 533. [Google Scholar] [CrossRef] [Green Version]
  32. Subramanian, M.; Kumar, A.V.; Gopal, T.N. Analysis of fractional boundary value problem with non local flux multi-point conditions on a caputo fractional differential equation. Stud. Univ. Babes-Bolyai. Math. 2019, 64, 511–527. [Google Scholar] [CrossRef]
  33. Tudorache, A.; Luca, R. Positive Solutions for a Fractional Differential Equation with Sequential Derivatives and Nonlocal Boundary Conditions. Symmetry 2022, 9, 1779. [Google Scholar] [CrossRef]
  34. Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized liouville–caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]
  35. Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2020, 6, 168–194. [Google Scholar] [CrossRef]
  36. Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
  37. Katugampola, U.N. A new approach to generalized fractional derivatives. arXiv 2011, arXiv:1106.0965. [Google Scholar]
  38. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
  39. Granas, A.; Dugundji, J. Fixed Point Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Awadalla, M.; Subramanian, M.; Abuasbeh, K. Existence and Ulam–Hyers Stability Results for a System of Coupled Generalized Liouville–Caputo Fractional Langevin Equations with Multipoint Boundary Conditions. Symmetry 2023, 15, 198. https://doi.org/10.3390/sym15010198

AMA Style

Awadalla M, Subramanian M, Abuasbeh K. Existence and Ulam–Hyers Stability Results for a System of Coupled Generalized Liouville–Caputo Fractional Langevin Equations with Multipoint Boundary Conditions. Symmetry. 2023; 15(1):198. https://doi.org/10.3390/sym15010198

Chicago/Turabian Style

Awadalla, Muath, Muthaiah Subramanian, and Kinda Abuasbeh. 2023. "Existence and Ulam–Hyers Stability Results for a System of Coupled Generalized Liouville–Caputo Fractional Langevin Equations with Multipoint Boundary Conditions" Symmetry 15, no. 1: 198. https://doi.org/10.3390/sym15010198

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop