# An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

## 3. The First Result

**Theorem**

**1.**

**Proof.**

## 4. The Second Result

**Theorem**

**2.**

**Proof.**

## 5. Examples

## 6. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear Anal. Model. Control
**2020**, 25, 827–845. [Google Scholar] [CrossRef] - Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Funct. Anal.
**2016**, 1, 343–359. [Google Scholar] - de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. l’Académie Sci.
**1976**, 283, 185–187. [Google Scholar] - de Blasi, F.S.; Myjak, J.; Reich, S.; Zaslavski, A.J. Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal.
**2009**, 17, 97–112. [Google Scholar] [CrossRef] - Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal.
**2017**, 2, 657–666. [Google Scholar] - Kassab, W.; Turcanu, T. Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics
**2019**, 7, 390. [Google Scholar] [CrossRef] - Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. Theory Methods Appl.
**1990**, 14, 935–953. [Google Scholar] [CrossRef] - Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An introduction to fixed point theory in modular function spaces. In Topics in Fixed Point Theory; Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–222. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Funct. Anal.
**2016**, 1, 63–84. [Google Scholar] - Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discret. Dyn. Nat. Soc.
**2020**, 2020, 8634050. [Google Scholar] [CrossRef] - Okeke, G.A.; Ugwuogor, C.I. Iterative construction of the fixed point of Suzuki’s generalized nonexpansive mappings in Banach spaces. Fixed Point Theory
**2022**, 23, 633–652. [Google Scholar] - Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc.
**1962**, 13, 459–465. [Google Scholar] [CrossRef] - Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math.
**1922**, 3, 133–181. [Google Scholar] [CrossRef] - Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Funct. Anal.
**2018**, 3, 565–586. [Google Scholar] - Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal.
**2017**, 2, 243–258. [Google Scholar] - Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization
**2017**, 66, 417–437. [Google Scholar] [CrossRef] - Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal.
**2017**, 2, 685–699. [Google Scholar] - Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal.
**2018**, 3, 349–369. [Google Scholar] - Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett.
**2018**, 12, 1019–1027. [Google Scholar] [CrossRef] [Green Version] - Bauschke, H.H.; Noll, D. On the local convergence of the Douglas-Rachford algorithm. Arch. Math.
**2014**, 102, 589–600. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zaslavski, A.J.
An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. *Symmetry* **2022**, *14*, 1852.
https://doi.org/10.3390/sym14091852

**AMA Style**

Zaslavski AJ.
An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. *Symmetry*. 2022; 14(9):1852.
https://doi.org/10.3390/sym14091852

**Chicago/Turabian Style**

Zaslavski, Alexander J.
2022. "An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces" *Symmetry* 14, no. 9: 1852.
https://doi.org/10.3390/sym14091852