Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory
Abstract
:1. Introduction
2. Cartan Gravity
3. Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Introduction of Cartan Equation
References
- Cartan, E. Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Annales Scientifiques de l’École Normale Supérieure 1923, 40, 325–412. [Google Scholar] [CrossRef]
- Goenner, H. On the history of unified field theories. Living Rev. Rel. 2004, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Sciama, D.W. The Physical Structure of General Relativity. Rev. Mod. Phys. 1964, 36, 463–469. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Lorentz Invariance and the Gravitational Field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Burnett, J. Dark spinors with torsion in cosmology. Phys. Rev. D 2008, 78, 104001. [Google Scholar] [CrossRef]
- Popławski, N.J. Cosmology with torsion: An alternative to cosmic inflation. Phys. Lett. B 2010, 694, 181–185. [Google Scholar] [CrossRef]
- Magueijo, J.A.; Zlosnik, T.G.; Kibble, T.W.B. Cosmology with a spin. Phys. Rev. D 2013, 87, 063504. [Google Scholar] [CrossRef]
- Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S. Einstein-Cartan gravity, matter, and scale-invariant generalization. J. High Energy Phys. 2020, 10, 177. [Google Scholar] [CrossRef]
- Shaposhnikov, M.; Shkerin, A.; Timiryasov, I.; Zell, S. Higgs inflation in Einstein-Cartan gravity. J. Cosmol. Astropart. Phys. 2021, 2, 8. [Google Scholar] [CrossRef]
- Iosifidis, D.; Ravera, L. The cosmology of quadratic torsionful gravity. Eur. Phys. J. C 2021, 81, 736. [Google Scholar] [CrossRef]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Imprints from a Riemann–Cartan space-time on the energy levels of Dirac spinors. Class. Quant. Grav. 2021, 38, 195008. [Google Scholar] [CrossRef]
- Piani, M.; Rubio, J. Higgs-Dilaton inflation in Einstein-Cartan gravity. J. Cosmol. Astropart. Phys. 2022, 5, 9. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1–8. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Jordan, P.; Schücking, E. Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie; F. Vieweg und Sohn: Braunschweig, Germany, 1955. [Google Scholar]
- Catena, R.; Pietroni, M.; Scarabello, L. Einstein and Jordan reconciled: A frame-invariant approach to scalar-tensor cosmology. Phys. Rev. D 2007, 76, 084039. [Google Scholar] [CrossRef]
- Steinwachs, C.F.; Kamenshchik, A.Y. One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 2011, 84, 024026. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Steinwachs, C.F. Question of quantum equivalence between Jordan frame and Einstein frame. Phys. Rev. D 2015, 91, 084033. [Google Scholar] [CrossRef]
- Hamada, Y.; Kawai, H.; Nakanishi, Y.; Oda, K.y. Meaning of the field dependence of the renormalization scale in Higgs inflation. Phys. Rev. D 2017, 95, 103524. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Sato, K. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. R. Astron. Soc. 1981, 195, 467–479. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Adv. Ser. Astrophys. Cosmol. 1987, 3, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, M.; Romero, R.; Gonzalez, D. The gauge symmetries of f(R) gravity with torsion in the Cartan formalism. Class. Quant. Grav. 2020, 37, 045008. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S. The Metric-affine formalism of F(R) gravity. J. Phys. Conf. Ser. 2007, 68, 012022. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S. Metric-affine F(R) theories of gravity. Ann. Phys. 2007, 322, 935–966. [Google Scholar] [CrossRef]
- Iosifidis, D.; Petkou, A.C.; Tsagas, C.G. Torsion/non-metricity duality in F(R) gravity. Gen. Rel. Grav. 2019, 51, 66. [Google Scholar] [CrossRef]
- Capozziello, S.; Cianci, R.; Stornaiolo, C.; Vignolo, S. f(R) gravity with torsion: The Metric-affine approach. Class. Quant. Grav. 2007, 24, 6417–6430. [Google Scholar] [CrossRef]
- Capozziello, S.; Cianci, R.; Stornaiolo, C.; Vignolo, S. f(R) gravity with torsion: A Geometric approach within the J-bundles framework. Int. J. Geom. Meth. Mod. Phys. 2008, 5, 765–788. [Google Scholar] [CrossRef]
- Sotiriou, T.P. f(R) gravity, torsion and non-metricity. Class. Quant. Grav. 2009, 26, 152001. [Google Scholar] [CrossRef]
- Capozziello, S.; Vignolo, S. Metric-affine f(R)-gravity with torsion: An Overview. Annalen Phys. 2010, 19, 238–248. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini Approach to Modified Gravity: F(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.; Kerlick, G.; Von Der Heyde, P. General relativity with spin and torsion and its deviations from einstein’s theory. Phys. Rev. D 1974, 10, 1066–1069. [Google Scholar] [CrossRef]
- Kerlick, G. Cosmology and Particle Pair Production via Gravitational Spin Spin Interaction in the Einstein-Cartan-Sciama-Kibble Theory of Gravity. Phys. Rev. D 1975, 12, 3004–3006. [Google Scholar] [CrossRef]
- Gasperini, M. Spin Dominated Inflation in the Einstein-cartan Theory. Phys. Rev. Lett. 1986, 56, 2873–2876. [Google Scholar] [CrossRef]
- Hehl, F.; Datta, B. Nonlinear spinor equation and asymmetric connection in general relativity. J. Math. Phys. 1971, 12, 1334–1339. [Google Scholar] [CrossRef]
- Boos, J.; Hehl, F.W. Gravity-induced four-fermion contact interaction implies gravitational intermediate W and Z type gauge bosons. Int. J. Theor. Phys. 2017, 56, 751–756. [Google Scholar] [CrossRef]
- de Andrade, V.C.; Pereira, J.G. Torsion and the electromagnetic field. Int. J. Mod. Phys. D 1999, 8, 141–151. [Google Scholar] [CrossRef]
- Nieh, H.T. Torsion in Gauge Theory. Phys. Rev. D 2018, 97, 044027. [Google Scholar] [CrossRef]
- Rarita, W.; Schwinger, J. On a theory of particles with half integral spin. Phys. Rev. 1941, 60, 61. [Google Scholar] [CrossRef]
- Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 2003, 1, 625. [Google Scholar]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Poplawski, N.J. Four-fermion interaction from torsion as dark energy. Gen. Rel. Grav. 2012, 44, 491–499. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inagaki, T.; Taniguchi, M. Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory. Symmetry 2022, 14, 1830. https://doi.org/10.3390/sym14091830
Inagaki T, Taniguchi M. Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory. Symmetry. 2022; 14(9):1830. https://doi.org/10.3390/sym14091830
Chicago/Turabian StyleInagaki, Tomohiro, and Masahiko Taniguchi. 2022. "Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory" Symmetry 14, no. 9: 1830. https://doi.org/10.3390/sym14091830
APA StyleInagaki, T., & Taniguchi, M. (2022). Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory. Symmetry, 14(9), 1830. https://doi.org/10.3390/sym14091830