Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review
Abstract
1. Introduction
2. Symmetry Restoration and Order of Phase Transitions
3. Breakdown of Perturbative Expansion and Thermal Resummation
4. Electroweak Phase Transition
4.1. Standard Model
- The above demonstration does not take the thermal resummation into consideration. If one performs it by either the Parwani or AE scheme, E would be diminished by the resummation effect as discussed in Section 3.
- The effective potential is the sum of 1-particle-irreducible diagrams by definition, which is inherently gauge dependent, and so the VEV defined by the minimum of the effective potential depends on a choice of specific gauge. This is natural consequence since the normalization of the scalar fields (wavefunction renormalization) is missing. Notwithstanding, energies at stationary points are gauge independent obeyed by the NFK identity [109,110].
- Since the phase transition is generically non-perturbative phenomenon, lattice calculations are more suitable to obtain robust results. It is shown in Refs. [140,141,142,143] that EWPT turns into smooth crossover for GeV. After the Higgs boson discovery, EWPT is re-analyzed in Ref. [144] in a different context. The “critical temperature" is found to be GeV.
4.2. Standard Model with a Real Scalar
4.3. Perturbative Gauge-Invariant Treatment for the Thermal Phase Transitions
4.4. Comparisons among Various Calculation Schemes
5. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Thermally Corrected Field-Dependent Masses in the rSM
References
- Kirzhnits, D.A. Weinberg model in the hot universe. JETP Lett. 1972, 15, 529–531. [Google Scholar]
- Kirzhnits, D.A.; Linde, A.D. Macroscopic Consequences of the Weinberg Model. Phys. Lett. 1972, 42B, 471–474. [Google Scholar] [CrossRef]
- Dolan, L.; Jackiw, R. Symmetry Behavior at Finite Temperature. Phys. Rev. 1974, D9, 3320–3341. [Google Scholar] [CrossRef]
- Weinberg, S. Gauge and Global Symmetries at High Temperature. Phys. Rev. 1974, D9, 3357–3378. [Google Scholar] [CrossRef]
- Kirzhnits, D.A.; Linde, A.D. Symmetry Behavior in Gauge Theories. Ann. Phys. 1976, 101, 195–238. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. Phys. Rev. 2018, D98, 030001. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. 1985, 155B, 36. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Shaposhnikov, M.E. Electroweak baryon number nonconservation in the early universe and in high-energy collisions. Usp. Fiz. Nauk 1996, 166, 493–537. [Google Scholar] [CrossRef]
- Funakubo, K. CP violation and baryogenesis at the electroweak phase transition. Prog. Theor. Phys. 1996, 96, 475–520. [Google Scholar] [CrossRef]
- Riotto, A. Theories of baryogenesis. In Proceedings of the Summer School in High-energy physics and cosmology, Trieste, Italy, 29 June–17 July 1998; pp. 326–436. [Google Scholar]
- Quiros, M. Finite temperature field theory and phase transitions. In Proceedings of the Summer School in High-Energy Physics and Cosmology, Trieste, Italy, 29 June–17 July 1998; pp. 187–259. [Google Scholar]
- Trodden, M. Electroweak baryogenesis. Rev. Mod. Phys. 1999, 71, 1463–1500. [Google Scholar] [CrossRef]
- Bernreuther, W. CP violation and baryogenesis. Lect. Notes Phys. 2002, 591, 237–293. [Google Scholar]
- Cline, J.M. Baryogenesis. In Proceedings of the Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, Les Houches, France, 31 July–25 August 2006. [Google Scholar]
- Morrissey, D.E.; Ramsey-Musolf, M.J. Electroweak baryogenesis. New J. Phys. 2012, 14, 125003. [Google Scholar] [CrossRef]
- Konstandin, T. Quantum Transport and Electroweak Baryogenesis. Phys. Usp. 2013, 56, 747–771. [Google Scholar] [CrossRef]
- Caprini, C.; Hindmarsh, M.; Huber, S.; Konstandin, T.; Kozaczuk, J.; Nardini, G.; No, J.M.; Petiteau, A.; Schwaller, P.; Servant, G.; et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP 2016, 1604, 001. [Google Scholar] [CrossRef]
- Choi, J.; Volkas, R.R. Real Higgs singlet and the electroweak phase transition in the Standard Model. Phys. Lett. 1993, B317, 385–391. [Google Scholar] [CrossRef]
- Ham, S.W.; Jeong, Y.S.; Oh, S.K. Electroweak phase transition in an extension of the standard model with a real Higgs singlet. J. Phys. 2005, G31, 857–871. [Google Scholar] [CrossRef]
- Ahriche, A. What is the criterion for a strong first order electroweak phase transition in singlet models? Phys. Rev. 2007, D75, 083522. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Quiros, M. Novel Effects in Electroweak Breaking from a Hidden Sector. Phys. Rev. 2007, D76, 076004. [Google Scholar] [CrossRef]
- Das, S.; Fox, P.J.; Kumar, A.; Weiner, N. The Dark Side of the Electroweak Phase Transition. JHEP 2010, 11, 108. [Google Scholar] [CrossRef][Green Version]
- Chung, D.J.H.; Long, A.J. Cosmological Constant, Dark Matter, and Electroweak Phase Transition. Phys. Rev. 2011, D84, 103513. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Gripaios, B.; Konstandin, T.; Riva, F. Electroweak Baryogenesis in Non-minimal Composite Higgs Models. JCAP 2012, 1201, 012. [Google Scholar] [CrossRef]
- Cline, J.M.; Kainulainen, K. Electroweak baryogenesis and dark matter from a singlet Higgs. JCAP 2013, 1301, 012. [Google Scholar] [CrossRef]
- Fairbairn, M.; Hogan, R. Singlet Fermionic Dark Matter and the Electroweak Phase Transition. JHEP 2013, 09, 022. [Google Scholar] [CrossRef]
- Cline, J.M.; Kainulainen, K.; Scott, P.; Weniger, C. Update on scalar singlet dark matter. Phys. Rev. 2013, D88, 055025. [Google Scholar] [CrossRef]
- Damgaard, P.H.; O’Connell, D.; Petersen, T.C.; Tranberg, A. Constraints on New Physics from Baryogenesis and Large Hadron Collider Data. Phys. Rev. Lett. 2013, 111, 221804. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Y.F. Strongly first order phase transition in the singlet fermionic dark matter model after LUX. JHEP 2014, 07, 006. [Google Scholar] [CrossRef]
- Profumo, S.; Ramsey-Musolf, M.J.; Shaughnessy, G. Singlet Higgs phenomenology and the electroweak phase transition. JHEP 2007, 08, 010. [Google Scholar] [CrossRef]
- Ashoorioon, A.; Konstandin, T. Strong electroweak phase transitions without collider traces. JHEP 2009, 07, 086. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Konstandin, T.; Riva, F. Strong Electroweak Phase Transitions in the Standard Model with a Singlet. Nucl. Phys. 2012, B854, 592–630. [Google Scholar] [CrossRef]
- Fuyuto, K.; Senaha, E. Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended standard model. Phys. Rev. 2014, D90, 015015. [Google Scholar] [CrossRef]
- Alanne, T.; Tuominen, K.; Vaskonen, V. Strong phase transition, dark matter and vacuum stability from simple hidden sectors. Nucl. Phys. 2014, B889, 692–711. [Google Scholar] [CrossRef]
- Profumo, S.; Ramsey-Musolf, M.J.; Wainwright, C.L.; Winslow, P. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies. Phys. Rev. 2015, D91, 035018. [Google Scholar] [CrossRef]
- Craig, N.; Lou, H.K.; McCullough, M.; Thalapillil, A. The Higgs Portal Above Threshold. JHEP 2016, 02, 127. [Google Scholar] [CrossRef]
- Curtin, D.; Meade, P.; Yu, C.T. Testing Electroweak Baryogenesis with Future Colliders. JHEP 2014, 11, 127. [Google Scholar] [CrossRef]
- Kozaczuk, J. Bubble Expansion and the Viability of Singlet-Driven Electroweak Baryogenesis. JHEP 2015, 10, 135. [Google Scholar] [CrossRef]
- Damgaard, P.H.; Haarr, A.; O’Connell, D.; Tranberg, A. Effective Field Theory and Electroweak Baryogenesis in the Singlet-Extended Standard Model. JHEP 2016, 02, 107. [Google Scholar] [CrossRef]
- Ghosh, S.; Kundu, A.; Ray, S. Potential of a singlet scalar enhanced Standard Model. Phys. Rev. 2016, D93, 115034. [Google Scholar] [CrossRef]
- Kotwal, A.V.; Ramsey-Musolf, M.J.; No, J.M.; Winslow, P. Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier. Phys. Rev. 2016, D94, 035022. [Google Scholar] [CrossRef]
- Chala, M.; Nardini, G.; Sobolev, I. Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures. Phys. Rev. 2016, D94, 055006. [Google Scholar] [CrossRef]
- Tenkanen, T.; Tuominen, K.; Vaskonen, V. A Strong Electroweak Phase Transition from the Inflaton Field. JCAP 2016, 1609, 037. [Google Scholar] [CrossRef]
- Huang, P.; Long, A.J.; Wang, L.T. Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves. Phys. Rev. 2016, D94, 075008. [Google Scholar] [CrossRef]
- Vaskonen, V. Electroweak baryogenesis and gravitational waves from a real scalar singlet. Phys. Rev. 2017, D95, 123515. [Google Scholar] [CrossRef]
- Curtin, D.; Meade, P.; Ramani, H. Thermal Resummation and Phase Transitions. Eur. Phys. J. 2018, C78, 787. [Google Scholar] [CrossRef]
- Cline, J.M.; Kainulainen, K.; Tucker-Smith, D. Electroweak baryogenesis from a dark sector. Phys. Rev. 2017, D95, 115006. [Google Scholar] [CrossRef]
- Beniwal, A.; Lewicki, M.; Wells, J.D.; White, M.; Williams, A.G. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis. JHEP 2017, 08, 108. [Google Scholar] [CrossRef]
- Ghorbani, P.H. Electroweak Baryogenesis and Dark Matter via a Pseudoscalar vs. Scalar. JHEP 2017, 08, 058. [Google Scholar] [CrossRef]
- Marzola, L.; Racioppi, A.; Vaskonen, V. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model. Eur. Phys. J. 2017, C77, 484. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kozaczuk, J.; Lewis, I.M. Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition. JHEP 2017, 08, 096. [Google Scholar] [CrossRef]
- Kurup, G.; Perelstein, M. Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model. Phys. Rev. 2017, D96, 015036. [Google Scholar] [CrossRef]
- Jain, B.; Lee, S.J.; Son, M. Validity of the effective potential and the precision of Higgs field self-couplings. Phys. Rev. 2018, D98, 075002. [Google Scholar] [CrossRef]
- Ghorbani, K.; Ghorbani, P.H. Strongly First-Order Phase Transition in Real Singlet Scalar Dark Matter Model. J. Phys. 2020, G47, 015201. [Google Scholar] [CrossRef]
- Huang, F.P.; Qian, Z.; Zhang, M. Exploring dynamical CP violation induced baryogenesis by gravitational waves and colliders. Phys. Rev. 2018, D98, 015014. [Google Scholar] [CrossRef]
- Chiang, C.W.; Li, Y.T.; Senaha, E. Revisiting electroweak phase transition in the standard model with a real singlet scalar. Phys. Lett. 2019, B789, 154–159. [Google Scholar] [CrossRef]
- Beniwal, A.; Lewicki, M.; White, M.; Williams, A.G. Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model. JHEP 2019, 02, 183. [Google Scholar] [CrossRef]
- Carena, M.; Liu, Z.; Wang, Y. Electroweak Phase Transition with Spontaneous Z2-Breaking. 2019. Available online: http://xxx.lanl.gov/abs/1911.10206 (accessed on 20 April 2020).
- Kondo, Y.; Umemura, I.; Yamamoto, K. First order phase transition in the singlet Majoron model. Phys. Lett. 1991, B263, 93–96. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Quiros, M. The Electroweak phase transition with a singlet. Phys. Lett. 1993, B305, 98–105. [Google Scholar] [CrossRef]
- Benson, K.E.C. Avoiding baryon washout in the extended Standard Model. Phys. Rev. 1993, D48, 2456–2461. [Google Scholar] [CrossRef]
- Cline, J.M.; Laporte, G.; Yamashita, H.; Kraml, S. Electroweak Phase Transition and LHC Signatures in the Singlet Majoron Model. JHEP 2009, 07, 040. [Google Scholar] [CrossRef]
- Farzinnia, A.; Ren, J. Strongly First-Order Electroweak Phase Transition and Classical Scale Invariance. Phys. Rev. 2014, D90, 075012. [Google Scholar] [CrossRef]
- Chao, W. First order electroweak phase transition triggered by the Higgs portal vector dark matter. Phys. Rev. 2015, D92, 015025. [Google Scholar] [CrossRef]
- Kang, Z.; Ko, P.; Matsui, T. Strong first order EWPT & strong gravitational waves in Z3-symmetric singlet scalar extension. JHEP 2018, 02, 115. [Google Scholar] [CrossRef]
- Chiang, C.W.; Ramsey-Musolf, M.J.; Senaha, E. Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations. Phys. Rev. 2018, D97, 015005. [Google Scholar] [CrossRef]
- Cheng, W.; Bian, L. From inflation to cosmological electroweak phase transition with a complex scalar singlet. Phys. Rev. 2018, D98, 023524. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Huang, D. Spontaneous CP-Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar. JHEP 2018, 08, 135. [Google Scholar] [CrossRef]
- Chen, N.; Li, T.; Wu, Y.; Bian, L. Discriminate the Discrete Symmetry Through the Future e+e- Colliders and Gravitational Waves. 2019. Available online: http://xxx.lanl.gov/abs/1911.05579 (accessed on 20 April 2020).
- Bochkarev, A.I.; Kuzmin, S.V.; Shaposhnikov, M.E. Electroweak baryogenesis and the Higgs boson mass problem. Phys. Lett. 1990, B244, 275–278. [Google Scholar] [CrossRef]
- Turok, N.; Zadrozny, J. Phase transitions in the two doublet model. Nucl. Phys. 1992, B369, 729–742. [Google Scholar] [CrossRef]
- Land, D.; Carlson, E.D. Two stage phase transition in two Higgs models. Phys. Lett. 1992, B292, 107–112. [Google Scholar] [CrossRef][Green Version]
- Hammerschmitt, A.; Kripfganz, J.; Schmidt, M.G. Baryon asymmetry from a two stage electroweak phase transition? Z. Phys. 1994, C64, 105–110. [Google Scholar] [CrossRef]
- Funakubo, K.; Kakuto, A.; Takenaga, K. The Effective potential of electroweak theory with two massless Higgs doublets at finite temperature. Prog. Theor. Phys. 1994, 91, 341–352. [Google Scholar] [CrossRef]
- Cline, J.M.; Lemieux, P.A. Electroweak phase transition in two Higgs doublet models. Phys. Rev. 1997, D55, 3873–3881. [Google Scholar] [CrossRef]
- Kanemura, S.; Okada, Y.; Senaha, E. Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling. Phys. Lett. 2005, B606, 361–366. [Google Scholar] [CrossRef]
- Fromme, L.; Huber, S.J.; Seniuch, M. Baryogenesis in the two-Higgs doublet model. JHEP 2006, 11, 038. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Nemevsek, M.; Senjanovic, G.; Zhang, Y. Dark Matter as the Trigger of Strong Electroweak Phase Transition. JCAP 2012, 1202, 029. [Google Scholar] [CrossRef]
- Borah, D.; Cline, J.M. Inert Doublet Dark Matter with Strong Electroweak Phase Transition. Phys. Rev. 2012, D86, 055001. [Google Scholar] [CrossRef]
- Gil, G.; Chankowski, P.; Krawczyk, M. Inert Dark Matter and Strong Electroweak Phase Transition. Phys. Lett. 2012, B717, 396–402. [Google Scholar] [CrossRef]
- Cline, J.M.; Kainulainen, K. Improved Electroweak Phase Transition with Subdominant Inert Doublet Dark Matter. Phys. Rev. 2013, D87, 071701. [Google Scholar] [CrossRef]
- Dorsch, G.C.; Huber, S.J.; No, J.M. A strong electroweak phase transition in the 2HDM after LHC8. JHEP 2013, 10, 029. [Google Scholar] [CrossRef]
- Dorsch, G.C.; Huber, S.J.; Mimasu, K.; No, J.M. Echoes of the Electroweak Phase Transition: Discovering a second Higgs doublet through A0 → ZH0. Phys. Rev. Lett. 2014, 113, 211802. [Google Scholar] [CrossRef]
- Blinov, N.; Profumo, S.; Stefaniak, T. The Electroweak Phase Transition in the Inert Doublet Model. JCAP 2015, 1507, 028. [Google Scholar] [CrossRef]
- Fuyuto, K.; Senaha, E. Sphaleron and critical bubble in the scale invariant two Higgs doublet model. Phys. Lett. 2015, B747, 152–157. [Google Scholar] [CrossRef]
- Basler, P.; Mühlleitner, M.; Wittbrodt, J. The CP-Violating 2HDM in Light of a Strong First Order Electroweak Phase Transition and Implications for Higgs Pair Production. JHEP 2018, 03, 061. [Google Scholar] [CrossRef]
- Huang, F.P.; Senaha, E. Enhanced Z boson decays as a new probe of first-order electroweak phase transition at future lepton colliders. Phys. Rev. 2019, D100, 035014. [Google Scholar] [CrossRef]
- Wang, X.; Huang, F.P.; Zhang, X. Gravitational wave and collider signals in complex two-Higgs doublet model with dynamical CP-violation at finite temperature. Phys. Rev. 2020, D101, 015015. [Google Scholar] [CrossRef]
- Pietroni, M. The Electroweak phase transition in a nonminimal supersymmetric model. Nucl. Phys. 1993, B402, 27–45. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Quiros, M.; Zwirner, F. On the electroweak phase transition in the minimal supersymmetric Standard Model. Phys. Lett. 1993, B307, 106–115. [Google Scholar] [CrossRef]
- Brignole, A.; Espinosa, J.R.; Quiros, M.; Zwirner, F. Aspects of the electroweak phase transition in the minimal supersymmetric standard model. Phys. Lett. 1994, B324, 181–191. [Google Scholar] [CrossRef]
- Davies, A.T.; Froggatt, C.D.; Moorhouse, R.G. Electroweak baryogenesis in the next-to-minimal supersymmetric model. Phys. Lett. 1996, B372, 88–94. [Google Scholar] [CrossRef]
- Espinosa, J.R. Dominant two loop corrections to the MSSM finite temperature effective potential. Nucl. Phys. 1996, B475, 273–292. [Google Scholar] [CrossRef]
- De Carlos, B.; Espinosa, J.R. The Baryogenesis window in the MSSM. Nucl. Phys. 1997, B503, 24–54. [Google Scholar] [CrossRef][Green Version]
- Huber, S.J.; Schmidt, M.G. Electroweak baryogenesis: Concrete in a SUSY model with a gauge singlet. Nucl. Phys. 2001, B606, 183–230. [Google Scholar] [CrossRef]
- Funakubo, K.; Tao, S.; Toyoda, F. CP violation in the Higgs sector and phase transition in the MSSM. Prog. Theor. Phys. 2003, 109, 415–432. [Google Scholar] [CrossRef]
- Funakubo, K.; Tao, S.; Toyoda, F. Phase transitions in the NMSSM. Prog. Theor. Phys. 2005, 114, 369–389. [Google Scholar] [CrossRef][Green Version]
- Huber, S.J.; Konstandin, T.; Prokopec, T.; Schmidt, M.G. Electroweak Phase Transition and Baryogenesis in the nMSSM. Nucl. Phys. 2006, B757, 172–196. [Google Scholar] [CrossRef]
- Funakubo, K.; Senaha, E. Electroweak phase transition, critical bubbles and sphaleron decoupling condition in the MSSM. Phys. Rev. 2009, D79, 115024. [Google Scholar] [CrossRef]
- Chiang, C.W.; Senaha, E. Electroweak phase transitions in the secluded U(1)-prime-extended MSSM. JHEP 2010, 06, 030. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Long, A.J. Electroweak Phase Transition in the munuSSM. Phys. Rev. 2010, D81, 123531. [Google Scholar] [CrossRef]
- Kanemura, S.; Senaha, E.; Shindou, T. First-order electroweak phase transition powered by additional F-term loop effects in an extended supersymmetric Higgs sector. Phys. Lett. 2011, B706, 40–45. [Google Scholar] [CrossRef][Green Version]
- Carena, M.; Shah, N.R.; Wagner, C.E.M. Light Dark Matter and the Electroweak Phase Transition in the NMSSM. Phys. Rev. 2012, D85, 036003. [Google Scholar] [CrossRef]
- Fok, R.; Kribs, G.D.; Martin, A.; Tsai, Y. Electroweak Baryogenesis in R-symmetric Supersymmetry. Phys. Rev. 2013, D87, 055018. [Google Scholar] [CrossRef]
- Kanemura, S.; Senaha, E.; Shindou, T.; Yamada, T. Electroweak phase transition and Higgs boson couplings in the model based on supersymmetric strong dynamics. JHEP 2013, 05, 066. [Google Scholar] [CrossRef]
- Kozaczuk, J.; Profumo, S.; Haskins, L.S.; Wainwright, C.L. Cosmological Phase Transitions and their Properties in the NMSSM. JHEP 2015, 01, 144. [Google Scholar] [CrossRef]
- Athron, P.; Balazs, C.; Fowlie, A.; Pozzo, G.; White, G.; Zhang, Y. Strong first-order phase transitions in the NMSSM—A comprehensive survey. JHEP 2019, 11, 151. [Google Scholar] [CrossRef]
- Linde, A.D. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett. 1980, 96B, 289–292. [Google Scholar] [CrossRef]
- Nielsen, N.K. On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories. Nucl. Phys. 1975, B101, 173–188. [Google Scholar] [CrossRef]
- Fukuda, R.; Kugo, T. Gauge Invariance in the Effective Action and Potential. Phys. Rev. 1976, D13, 3469. [Google Scholar] [CrossRef]
- Jackiw, R. Functional evaluation of the effective potential. Phys. Rev. 1974, D9, 1686. [Google Scholar] [CrossRef]
- Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. 1973, D7, 1888–1910. [Google Scholar] [CrossRef]
- Weinberg, E.J.; Wu, A.Q. Understanding Complex Perturbative Effective Potentials. Phys. Rev. D 1987, 36, 2474. [Google Scholar] [CrossRef]
- Mazumdar, A.; White, G. Review of cosmic phase transitions: Their significance and experimental signatures. Rept. Prog. Phys. 2019, 82, 076901. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Quiros, M.; Zwirner, F. On the phase transition in the scalar theory. Phys. Lett. 1992, B291, 115–124. [Google Scholar] [CrossRef]
- Arnold, P.B.; Espinosa, O. The Effective potential and first order phase transitions: Beyond leading-order. Phys. Rev. 1993, D47, 3546. [Google Scholar] [CrossRef] [PubMed]
- Amelino-Camelia, G.; Pi, S.Y. Selfconsistent improvement of the finite temperature effective potential. Phys. Rev. 1993, D47, 2356–2362. [Google Scholar] [CrossRef]
- Parwani, R.R. Resummation in a hot scalar field theory. Phys. Rev. 1992, D45, 4695. [Google Scholar] [CrossRef] [PubMed]
- Kainulainen, K.; Keus, V.; Niemi, L.; Rummukainen, K.; Tenkanen, T.V.I.; Vaskonen, V. On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model. JHEP 2019, 06, 075. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley: Reading, PA, USA, 1995. [Google Scholar]
- Takahashi, K. PERTURBATIVE CALCULATIONS AT FINITE TEMPERATURES. Z. Phys. 1985, C26, 601–613. [Google Scholar] [CrossRef]
- Arafune, J.; Ogure, K.; Sato, J. Nonperturbative evaluation of the effective potential of lambda phi**4 theory at finite temperature under the superdaisy approximation. Prog. Theor. Phys. 1998, 99, 119–128. [Google Scholar] [CrossRef]
- Inagaki, T.; Ogure, K.; Sato, J. Nonperturbative approach to the effective potential of the lambda phi**4 theory at finite temperature. Prog. Theor. Phys. 1998, 99, 1069–1084. [Google Scholar] [CrossRef]
- Smet, G.; Vanzielighem, T.; Van Acoleyen, K.; Verschelde, H. A 2 loop 2PPI analysis of lambda phi**4 at finite temperature. Phys. Rev. 2002, D65, 045015. [Google Scholar] [CrossRef]
- Marko, G.; Reinosa, U.; Szep, Z. Broken Phase Effective Potential in the Two-Loop Phi-Derivable Approximation and Nature of the Phase Transition in a Scalar Theory. Phys. Rev. 2012, D86, 085031. [Google Scholar] [CrossRef]
- Bellac, M.L. Thermal Field Theory; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Gross, D.J.; Pisarski, R.D.; Yaffe, L.G. QCD and Instantons at Finite Temperature. Rev. Mod. Phys. 1981, 53, 43. [Google Scholar] [CrossRef]
- Frenkel, J.; Taylor, J.C. High Temperature Limit of Thermal QCD. Nucl. Phys. 1990, B334, 199–216. [Google Scholar] [CrossRef]
- Braaten, E.; Pisarski, R.D. Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD. Phys. Rev. Lett. 1990, 64, 1338. [Google Scholar] [CrossRef] [PubMed]
- Braaten, E.; Pisarski, R.D. Soft Amplitudes in Hot Gauge Theories: A General Analysis. Nucl. Phys. 1990, B337, 569–634. [Google Scholar] [CrossRef]
- Braaten, E.; Pisarski, R.D. Simple effective Lagrangian for hard thermal loops. Phys. Rev. 1992, D45, R1827. [Google Scholar] [CrossRef] [PubMed]
- Blaizot, J.P.; Iancu, E. The Quark gluon plasma: Collective dynamics and hard thermal loops. Phys. Rept. 2002, 359, 355–528. [Google Scholar] [CrossRef]
- Kraemmer, U.; Rebhan, A. Advances in perturbative thermal field theory. Rept. Prog. Phys. 2004, 67, 351. [Google Scholar] [CrossRef]
- Hofmann, R. Nonperturbative approach to Yang-Mills thermodynamics. Int. J. Mod. Phys. 2005, A20, 4123–4216. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Bischer, I.; Grandou, T.; Hofmann, R. On Quantum Fields at High Temperature. Universe 2019, 5, 26. [Google Scholar] [CrossRef]
- Fujii, K.; Grojean, C.; Peskin, M.E.; Barklow, T.; Gao, Y.; Kanemura, S.; Kim, H.; List, J.; Nojiri, M.; Perelstein, M.; et al. Physics Case for the International Linear Collider. 2015. Available online: http://xxx.lanl.gov/abs/1506.05992. (accessed on 20 April 2020).
- Gonçalves, D.; Han, T.; Kling, F.; Plehn, T.; Takeuchi, M. Higgs boson pair production at future hadron colliders: From kinematics to dynamics. Phys. Rev. 2018, D97, 113004. [Google Scholar] [CrossRef]
- Chang, J.; Cheung, K.; Lee, J.S.; Lu, C.T.; Park, J. Higgs-boson-pair production H(→bb-)H(→γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider. Phys. Rev. 2019, D100, 096001. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Is there a hot electroweak phase transition at m(H) larger or equal to m(W)? Phys. Rev. Lett. 1996, 77, 2887–2890. [Google Scholar] [CrossRef] [PubMed]
- Rummukainen, K.; Tsypin, M.; Kajantie, K.; Laine, M.; Shaposhnikov, M.E. The Universality class of the electroweak theory. Nucl. Phys. 1998, B532, 283–314. [Google Scholar] [CrossRef]
- Csikor, F.; Fodor, Z.; Heitger, J. Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 1999, 82, 21–24. [Google Scholar] [CrossRef]
- Aoki, Y.; Csikor, F.; Fodor, Z.; Ukawa, A. The Endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice. Phys. Rev. 1999, D60, 013001. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Rummukainen, K.; Tranberg, A. Sphaleron Rate in the Minimal Standard Model. Phys. Rev. Lett. 2014, 113, 141602. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.H.; Ramsey-Musolf, M.J. Baryon Washout, Electroweak Phase Transition, and Perturbation Theory. JHEP 2011, 07, 029. [Google Scholar] [CrossRef]
- Athron, P.; Balazs, C.; Bringmann, T.; Buckley, A.; Chrzaszcz, M.; Conrad, J.; Cornell, J.M.; Dal, L.A.; Edsjo. J; Farmer, B.; et al. Status of the scalar singlet dark matter model. Eur. Phys. J. 2017, C77, 568. [Google Scholar] [CrossRef]
- Athron, P.; Cornell, J.M.; Kahlhoefer, F.; Mckay, J.; Scott, P.; Wild, S. Impact of vacuum stability, perturbativity and XENON1T on global fits of ℤ2 and ℤ3 scalar singlet dark matter. Eur. Phys. J. 2018, C78, 830. [Google Scholar] [CrossRef]
- Carrington, M.E. The Effective potential at finite temperature in the Standard Model. Phys. Rev. 1992, D45, 2933–2944. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senaha, E. Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review. Symmetry 2020, 12, 733. https://doi.org/10.3390/sym12050733
Senaha E. Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review. Symmetry. 2020; 12(5):733. https://doi.org/10.3390/sym12050733
Chicago/Turabian StyleSenaha, Eibun. 2020. "Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review" Symmetry 12, no. 5: 733. https://doi.org/10.3390/sym12050733
APA StyleSenaha, E. (2020). Symmetry Restoration and Breaking at Finite Temperature: An Introductory Review. Symmetry, 12(5), 733. https://doi.org/10.3390/sym12050733