Non-Zero Order of an Extended Temme Integral
Abstract
:1. Introduction
2. Definite Integral of the Contour Integral
3. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral
3.1. The Hurwitz–Lerch Zeta Function
3.2. Infinite Sum of the Contour Integral
4. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Temme, N.M. A Double Integral Containing the Modified Bessel Function: Asymptotics and Computation. Math. Comput. 1986, 47, 683–691. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Brychkov, Y.A.; Marichev, O.I.; Savischenko, N.V. Handbook of Mellin Transforms; Taylor & Francis, Chapman and Hall/CRC: Abingdon, UK, 2019; 607p. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Gelca, R.; Andreescu, T. Putnam and Beyond, 1st ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248 (2012a:33001). [Google Scholar]
- Laurincikas, A.; Garunkstis, R. The Lerch Zeta-Function; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. Non-Zero Order of an Extended Temme Integral. Symmetry 2022, 14, 1573. https://doi.org/10.3390/sym14081573
Reynolds R, Stauffer A. Non-Zero Order of an Extended Temme Integral. Symmetry. 2022; 14(8):1573. https://doi.org/10.3390/sym14081573
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2022. "Non-Zero Order of an Extended Temme Integral" Symmetry 14, no. 8: 1573. https://doi.org/10.3390/sym14081573
APA StyleReynolds, R., & Stauffer, A. (2022). Non-Zero Order of an Extended Temme Integral. Symmetry, 14(8), 1573. https://doi.org/10.3390/sym14081573