Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials
Abstract
:1. Introduction
2. Initial Taylor Coefficients Estimates for the Class
3. The Fekete–Szegö Problem for the Function Class
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series, 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Dziok, J. A general solution of the Fekete-Szegö problem. Bound. Value Probl. 2013, 98, 13. [Google Scholar]
- Kanas, S. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453–8461. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient inequalities of functions associated with Petal type domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlă, L.I. Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by (p−q)—Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Frasin, B.A. Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 79. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Pales. J. Math. 2021, 10, 625–632. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comp. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlă, L.I. New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya operator. Mathematics 2022, 10, 1309. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Rim, S.H. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [Google Scholar] [CrossRef]
- Stein, E.M.; Weiss, G. Introduction to Fourier Analysis in Euclidean Space; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çağlar, M.; Cotîrlă, L.-I.; Buyankara, M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry 2022, 14, 1572. https://doi.org/10.3390/sym14081572
Çağlar M, Cotîrlă L-I, Buyankara M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry. 2022; 14(8):1572. https://doi.org/10.3390/sym14081572
Chicago/Turabian StyleÇağlar, Murat, Luminiţa-Ioana Cotîrlă, and Mucahit Buyankara. 2022. "Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials" Symmetry 14, no. 8: 1572. https://doi.org/10.3390/sym14081572
APA StyleÇağlar, M., Cotîrlă, L.-I., & Buyankara, M. (2022). Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry, 14(8), 1572. https://doi.org/10.3390/sym14081572