On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation
Abstract
:1. Introduction
2. Vanishing Viscosity Approximation
3. Theorem 1’s Proof Based on the Aubin–Lions Lemma
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudryashov, N.A.; Sinelshchikov, D.I. Extended models of non-linear waves in liquid with gas bubbles. Int. J. Non-Linear Mech. 2014, 63, 31–38. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I.; Volkov, A.K. Extended two dimensional equation for the description of nonlinear waves in gas-liquid mixture. Appl. Math. Comput. 2015, 268, 581–589. [Google Scholar] [CrossRef]
- Mennouni, A.; Bougoffa, L.; Wazwaz, A.M. A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens. Opt. Quantum Electron. 2022, 54. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I. Special solutions of a high-order equation for waves in a liquid with gas bubbles. Regul. Chaotic Dyn. 2014, 19, 576–585. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I. Periodic structures described by the perturbed Burgers-Korteweg-de Vries equation. Int. J. Non-Linear Mech. 2015, 72, 16–22. [Google Scholar] [CrossRef]
- Razzaghi, H.; Nadjafikhah, M.; Alipour Fakhri, Y. Approximate symmetries and invariant solutions for the generalizations of the Burgers- Korteweg-de Vries mod. AUT J. Model. Simul. 2019, 51, 249–254. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I. Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer. Phys. Lett. A 2010, 374, 2011–2016. [Google Scholar] [CrossRef]
- Olver, P. Hamiltonian perturbation theory and water waves. In Fluids and Plasmas: Geometry and Dynamics; AMS: Providence, RI, USA, 1984; Volume 28, pp. 231–249. [Google Scholar] [CrossRef]
- Kichenassamy, S.; Olver, P.J. Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM J. Math. Anal. 1992, 23, 1141–1166. [Google Scholar] [CrossRef]
- Craig, W.; Groves, M.D. Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 1994, 19, 367–389. [Google Scholar] [CrossRef]
- Chen, C.; Rui, W.; Long, Y. Different kinds of singular and nonsingular exact traveling wave solutions of the Kudryashov-Sinelshchikov equation in the special parametric conditions. Math. Probl. Eng. 2013, 2013, 456964. [Google Scholar] [CrossRef]
- Li, J.; Chen, G. Exact Traveling Wave Solutions And Their Bifurcations For The Kudryashov–Sinelshchikov Equation. Int. Bifurc. Chaos 2012, 22, 1250118. [Google Scholar] [CrossRef]
- Muatjetjeja, B.; Adem, A.R.; Mbusi, S.O. Traveling wave solutions and conservation laws of a generalized Kudryashov-Sinelshchikov equation. J. Appl. Anal. 2019, 25, 211–217. [Google Scholar] [CrossRef]
- Randrüüt, M. On the Kudryashov-Sinelshchikov equation for waves in bubbly liquids. Phys. Lett. A 2011, 375, 3687–3692. [Google Scholar] [CrossRef]
- Braun, M.R.M. On identical traveling-wave solutions of the Kudryashov-Sinelshchikov and related equations. Int. J. Non-Linear Mech. 2014, 58, 206–211. [Google Scholar] [CrossRef]
- He, B.; Meng, Q.; Long, Y. The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4137–4148. [Google Scholar] [CrossRef]
- Inc, M.; Aliyu, A.I.; Yusuf, A.; Baleanu, D. New solitary wave solutions and conservation laws to the Kudryashov-Sinelshchikov equation. Optik 2017, 142, 665–673. [Google Scholar] [CrossRef]
- He, B.; Meng, Q.; Zhang, J.; Long, Y. Periodic loop solutions and their limit forms for the Kudryashov-Sinelshchikov equation. Math. Probl. Eng. 2012, 10, 320163. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Iqbal, M.; Lu, D. Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J. Taibah Univ. Sci. 2019, 13, 1060–1072. [Google Scholar] [CrossRef]
- Kochanov, M.B.; Kudryashov, N.A. Quasi-exact solutions of the equation for description of nonlinear waves in a liquid with gas bubbles. Rep. Math. Phys. 2014, 74, 399–408. [Google Scholar] [CrossRef]
- Abdel Kader, A.H.; Abdel Latif, M.S.; Nour, H.M. Some exact solutions of the Kudryashov-Sinelshchikov equation using point transformations. Int. J. Appl. Comput. Math. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Recio, E.; de la Rosa, R.; Gandarias, M.L. Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation. Math. Methods Appl. Sci. 2018, 41, 1631–1641. [Google Scholar] [CrossRef]
- Lu, J. New exact solutions for Kudryashov-Sinelshchikov equation. Adv. Differ. Equ. 2018, 374. [Google Scholar] [CrossRef]
- Ray, S.S.; Singh, S. New Exact Solutions for the Wick-Type Stochastic Kudryashov–Sinelshchikov Equation. Commun. Theor. Phys. 2017, 67, 197. [Google Scholar] [CrossRef]
- Zhou, A.J.; Chen, A.H. Exact solutions of the Kudryashov–Sinelshchikov equation in ideal liquid with gas bubbles. Phys. Scr. 2018, 93, 125201. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Existence results for the Kudryashov-Sinelshchikov-Olver equation. Proc. R. Soc. Edinb. Sect. A 2021, 151, 425–450. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Dispersive and diffusive limits for Ostrovsky-Hunter type equations. NoDEA Nonlinear Differ. Equ. Appl. 2015, 22, 1733–1763. [Google Scholar] [CrossRef]
- LeFloch, P.G.; Natalini, R. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 1999, 36, 213–230. [Google Scholar] [CrossRef]
- Schonbek, M.E. Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differ. Equ. 1982, 7, 959–1000. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A singular limit problem for the Kudryashov-Sinelshchikov equation. ZAMM Z. Angew. Math. Mech. 2017, 97, 1020–1033. [Google Scholar] [CrossRef]
- Olver, P.J. Hamiltonian and non-Hamiltonian models for water waves. In Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983); Lecture Notes in Physics; Springer: Berlin, Germany, 1984; Volume 195, pp. 273–290. [Google Scholar] [CrossRef]
- Benney, D.J. A general theory for interactions between short and long waves. Stud. Appl. Math. 1976, 56, 81–94. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Soukharev, M.B.; Demina, M.V. Elliptic traveling waves of the Olver equation. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4104–4114. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Amer, W.; Sayed, A. Stability analysis for travelling wave solutions of the Olver and fifth-order KdV equations. J. Appl. Math. 2014, 839485. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sukharev, M.B. Exact solutions of a fifth-order nonlinear equation for describing waves in water. Prikl. Mat. Mekh. 2001, 65, 884–894. [Google Scholar] [CrossRef]
- Ponce, G. Lax pairs and higher order models for water waves. J. Differ. Equ. 1993, 102, 360–381. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. H4-solutions for the Olver-Benney equation. Ann. Mat. Pura Appl. 2021, 200, 1893–1933. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Global H4-solution solution for the fifth order Kudryashov-Sinelshchikov-Olver equation. J. Hyperbolic Differ. Equ. 2022, 19, 227–273. [Google Scholar]
- Benney, D.J. Long waves on liquid films. J. Math. Phys. 1966, 45, 150–155. [Google Scholar] [CrossRef]
- Lin, S.P. Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 1974, 63, 417–429. [Google Scholar] [CrossRef]
- Topper, J.; Kawahara, T. Approximate Equations for Long Nonlinear Waves on a Viscous Fluid. J. Phys. Soc. Jpn. 1978, 44, 663–666. [Google Scholar] [CrossRef]
- Biagioni, H.A.; Linares, F. On the Benney-Lin and Kawahara equations. J. Math. Anal. Appl. 1997, 211, 131–152. [Google Scholar] [CrossRef]
- Chen, W.; Li, J. On the low regularity of the Benney-Lin equation. J. Math. Anal. Appl. 2008, 339, 1134–1147. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Cui, S.B. On Cauchy problem of the Benney-Lin equation with low regularity initial data. Acta Math. Sin. 2009, 25, 2157–2168. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On the solutions for a Benney–Lin type equation. Discrete Contin. Dyn. Syst. Ser. B 2022. [Google Scholar] [CrossRef]
- Kuramoto, Y. Diffusion-Induced Chaos in Reaction Systems. Prog. Theor. Phys. Suppl. 1978, 64, 346–367. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Tsuzuki, T. On the Formation of Dissipative Structures in Reaction-Diffusion Systems: Reductive Perturbation Approach. Prog. Theor. Phys. 1975, 54, 687–699. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Tsuzuki, T. Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium. Prog. Theor. Phys. 1976, 55, 356–369. [Google Scholar] [CrossRef]
- Sivashinsky, G. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
- Chen, L.H.; Chang, H.C. Nonlinear waves on liquid film surfaces—II. Bifurcation analyses of the long-wave equation. Chem. Eng. Sci. 1986, 41, 2477–2486. [Google Scholar] [CrossRef]
- Hooper, A.P.; Grimshaw, R. Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 1985, 28, 37–45. [Google Scholar] [CrossRef]
- LaQuey, R.E.; Mahajan, S.M.; Rutherford, P.H.; Tang, W.M. Nonlinear Saturation of the Trapped-Ion Mode. Phys. Rev. Lett. 1975, 34, 391–394. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhao, S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Lat. Am. Appl. Res. 2004, 34, 65–68. [Google Scholar]
- Biagioni, H.A.; Bona, J.L.; Iório, R.J., Jr.; Scialom, M. On the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Adv. Differ. Equ. 1996, 1, 1–20. [Google Scholar]
- Tadmor, E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 1986, 17, 884–893. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On Classical Solutions for A Kuramoto-Sinelshchikov-Velarde-Type Equation. Algorithms 2020, 13, 77. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation. Math. Eng. 2021, 3, 1–43, Paper No. 036. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.Y.; Zhang, Z. A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane. Math. Methods Appl. Sci. 2017, 40, 5619–5641. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.Y.; Zhang, Z. A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval. ESAIM Control Optim. Calc. Var. 2020, 26, 43. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl. Math. 2016, 145, 89–113. [Google Scholar] [CrossRef]
- Christov, C.I.; Velarde, M.G. Dissipative solitons. Phys. D 1995, 86, 323–347. [Google Scholar] [CrossRef]
- Garcia-Ybarra, P.L.; Castillo, J.L.; Velarde, M.G. Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids 1987, 30, 2655–2661. [Google Scholar] [CrossRef]
- Garcia-Ybarra, P.; Castillo, J.; Velarde, M. A nonlinear evolution equation for Bénard-Marangoni convection with deformable boundary. Phys. Lett. A 1987, 122, 107–110. [Google Scholar] [CrossRef]
- Hyman, J.M.; Nicolaenko, B. Coherence and chaos in the Kuramoto-Velarde equation. In Directions in Partial Differential Equations; Academic Press: Boston, MA, USA, 1987; Volume 54, pp. 89–111. [Google Scholar]
- Velarde, M.G.; Normand, C. Convection. Sci. Am. 1980, 243, 92–109. [Google Scholar]
- Proctor, M. Convective Transport and Instability Phenomena. Edited by J. ZIEREP and H. OERTEL. G. Braun (Karlsruhe), 1982. 577 pp. DM92.00. J. Fluid Mech. 1983, 137, 462–463. [Google Scholar] [CrossRef]
- Kamenov, O.Y. Solitary-wave and periodic solutions of the Kuramoto-Velarde dispersive equation. J. Theoret. Appl. Mech. 2016, 46, 65–74. [Google Scholar] [CrossRef]
- Rodríguez-Bernal, A. Initial value problem and asymptotic low-dimensional behavior in the Kuramoto-Velarde equation. Nonlinear Anal. 1992, 19, 643–685. [Google Scholar] [CrossRef]
- Christov, C.I.; Velarde, M.G. On localized solutions of an equation governing Benard-Marangoni convection. Appl. Math. Model. 1993, 17, 311–320. [Google Scholar] [CrossRef]
- Mansour, M.B.A. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech. 2009, 30, 513–516. [Google Scholar] [CrossRef]
- Kamenov, O.Y. Periodic solutions of the non-integrable convective fluid equation. J. Math. Phys. 2012, 53, 063705. [Google Scholar] [CrossRef]
- Pilod, D. On the Cauchy problem for higher-order nonlinear dispersive equations. J. Differ. Equ. 2008, 245, 2055–2077. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness result for the Kuramoto-Velarde equation. Boll. Unione Mat. Ital. 2021, 14, 659–679. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. H1 solutions for the Kuramoto-Velarde type equation. Ric. Mat. 2022; in preprint. [Google Scholar]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 2020, 55, 103141. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One. Contemp. Math. 2020, 365–392. [Google Scholar] [CrossRef]
- Kenig, C.E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. 1993, 46, 527–620. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On “new travelling wave solutions” of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1891–1900. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A singular limit problem for conservation laws related to the Rosenau equation. J. Abstr. Differ. Equ. Appl. 2017, 8, 24–47. [Google Scholar]
- Kawahara, T. Oscillatory Solitary Waves in Dispersive Media. J. Phys. Soc. Jpn. 1972, 33, 260–264. [Google Scholar] [CrossRef]
- Natali, F. A note on the stability for Kawahara-KdV type equations. Appl. Math. Lett. 2010, 23, 591–596. [Google Scholar] [CrossRef]
- Cui, S.B.; Deng, D.G.; Tao, S.P. Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data. Acta Math. Sin. 2006, 22, 1457–1466. [Google Scholar] [CrossRef]
- Cui, S.; Tao, S. Strichartz estimates for dispersive equations and solvability of the Kawahara equation. J. Math. Anal. Appl. 2005, 304, 683–702. [Google Scholar] [CrossRef]
- Kato, T. Local well-posedness for Kawahara equation. Adv. Differ. Equ. 2011, 16, 257–287. [Google Scholar]
- Kato, T. Global well-posedness for the Kawahara equation with low regularity. Commun. Pure Appl. Anal. 2013, 12, 1321–1339. [Google Scholar] [CrossRef]
- Yan, W.; Li, Y. The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 2010, 33, 1647–1660. [Google Scholar] [CrossRef]
- Doronin, G.G.; Larkin, N. Well and ill-posed problems for the KdV and Kawahara equations. Bol. Soc. Parana. Mat. 2008, 26, 133–137. [Google Scholar] [CrossRef]
- Faminskii, A.V.; Opritova, M.A. On the initial-boundary-value problem in a half-strip for a generalized Kawahara equation. J. Math. Sci. 2015, 206, 17–38. [Google Scholar] [CrossRef]
- Jia, Y.; Huo, Z. Well-posedness for the fifth-order shallow water equations. J. Differ. Equ. 2009, 246, 2448–2467. [Google Scholar] [CrossRef]
- Wang, H.; Cui, S.B.; Deng, D.G. Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices. Acta Math. Sin. 2007, 23, 1435–1446. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Sun, M.; Li, S. Well-posedness and unique continuation property for the solutions to the generalized Kawahara equation below the energy space. Appl. Anal. 2018, 97, 2655–2685. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Sun, M.; Li, S. Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index. J. Dynam. Differ. Equ. 2019, 31, 419–433. [Google Scholar] [CrossRef]
- Cavalcante, M.; Kwak, C. The initial-boundary value problem for the Kawahara equation on the half-line. NoDEA Nonlinear Differ. Equ. Appl. 2020, 27, 45. [Google Scholar] [CrossRef]
- Cavalcante, M.; Kwak, C. Local well-posedness of the fifth-order KdV-type equations on the half-line. Commun. Pure Appl. Anal. 2019, 18, 2607–2661. [Google Scholar] [CrossRef]
- Doronin, G.G.; Larkin, N.A. Kawahara equation in a bounded domain. Discret. Contin. Dyn. Syst. Ser. B 2008, 10, 783–799. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation. J. Evol. Equ. 2021, 21, 625–651. [Google Scholar] [CrossRef]
- Coclite, G.; di Ruvo, L. On classical solutions for the fifth-order short pulse equation. Math. Methods Appl. Sci. 2021, 44, 8814–8837. [Google Scholar] [CrossRef]
- Molinet, L.; Wang, Y. Dispersive limit from the Kawahara to the KdV equation. J. Differ. Equ. 2013, 255, 2196–2219. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A singular limit problem for conservation laws related to the Kawahara equation. Bull. Sci. Math. 2016, 140, 303–338. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Netw. Heterog. Media 2016, 11, 281–300. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence results related to the modified Kawahara equation. Boll. Unione Mat. Ital. 2016, 8, 265–286. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Oleinik type estimates for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 2015, 423, 162–190. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J. Differ. Equ. 2014, 256, 3245–3277. [Google Scholar] [CrossRef]
- Coclite, G.M.; Garavello, M. A time-dependent optimal harvesting problem with measure-valued solutions. SIAM J. Control Optim. 2017, 55, 913–935. [Google Scholar] [CrossRef]
- Simon, J. Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 1987, 146, 65–96. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L.; Ernest, J.; Mishra, S. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Netw. Heterog. Media 2013, 8, 969–984. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects. Z. Angew. Math. Phys. 2021, 72, 68. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coclite, G.M.; di Ruvo, L. On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation. Symmetry 2022, 14, 1535. https://doi.org/10.3390/sym14081535
Coclite GM, di Ruvo L. On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation. Symmetry. 2022; 14(8):1535. https://doi.org/10.3390/sym14081535
Chicago/Turabian StyleCoclite, Giuseppe Maria, and Lorenzo di Ruvo. 2022. "On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation" Symmetry 14, no. 8: 1535. https://doi.org/10.3390/sym14081535
APA StyleCoclite, G. M., & di Ruvo, L. (2022). On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation. Symmetry, 14(8), 1535. https://doi.org/10.3390/sym14081535