Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function
Abstract
:1. Introduction
2. Preliminary Definitions and Lemmas
- (a)
- (b)
- (c)
- (a)
- (b)
- (c)
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fadipe-Joseph, O.A.; Oladipo, A.T.; Ezeafulukwe, U.A. Modified sigmoid function in univalent function theory. Int. J. Math. Sci. Engr. Appl. 2013, 7, 313–317. [Google Scholar]
- Hamzat, J.O.; Makinde, D.O. Coefficient Bounds for Bazilevic Functions Involving Logistic Sigmoid Function Associated with Conic Domains. Int. J. Math. Anal. Opt. Theory Appl. 2018, 2018, 392–400. [Google Scholar]
- Murugusundaramorthy, G.; Janani, T. Sigmoid function in the space of univalent λ-Pseudo starlike functions. Int. J. Pure Appl. Math. 2015, 101, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Oladipo, A.T.; Gbolagade, A.M. Subordination results for Logistic Sigmoid Function in the Space of Univalent functions in the unit disk. Adv. Comput. Sci. Eng. 2014, 12, 61–79. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Pall-Szabo, A.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordination conditions. J. Class. Annal. 2013, 2, 49–60. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Bulut, S. Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turk. J. Math. 2016, 40, 1386–1397. [Google Scholar] [CrossRef]
- Breaz, D.; Cotirla, L.I. The study of the new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Int. J. Math. 2014, 25, 1450064. [Google Scholar] [CrossRef]
- Hamzat, J.O. Some properties of a new subclass of m-Fold Symmetric bi-Bazilevic functions associated with modified sigmoid Functions. Tbilisi Math. J. 2021, 14, 107–118. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oladipo, A.T.; Fagbemiro, O. Coefficient Bounds For Certain New Subclass of m-Fold Symmetric Bi-Univalent Functions Associated with Conic Domains. Trends Sci. Tech. J. 2018, 3, 807–813. [Google Scholar]
- Oros, G.I.; Cotirla, L.I. Coefficient estimates and the Fekete-Szego problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Vijaya, K. Coefficient estimates for some families of Bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator. J. Class. Anal. 2013, 2, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Atshan, W.G.; Rahman, I.A.R.; Alb Lupaş, A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; El-Deeb, S.M. Subclasses of Bi-Univalent Functions Connected with Integral Operator Based upon Lucas Polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Wanas, A.K.; Pall-Szabo, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babes-Bolyai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Swamy, S.R. Inclusion Properties of Certain Subclasses of Analytic Functions. Inter. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
- Hamzat, J.O.; El-Ashwah, R.M. Some properties of a generalized multiplier transform on analytic p-valent functions. Ukr. J. Math. 2021. accepted. [Google Scholar]
- Makinde, D.O.; Hamzat, J.O.; Gbolagade, A.M. A generalized multiplier transform on a univalent integral operator. J. Contemp. Appl. Math. 2019, 9, 24–31. [Google Scholar]
- Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
- Cho, N.E.; Kim, T.H. Multiplier transformations and strongly Close-to-Convex functions. Bull. Korean Math. Soc. 2003, 40, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983; Volume 259. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Breaz, V.D.; Catas, A.; Cotirla, L. On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential functions. An. St. Univ. Ovidius Constanta 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New concept on fourth Hankel determinant of a cetrtain subclass of analytic functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzat, J.O.; Oladipo, A.T.; Oros, G.I. Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function. Symmetry 2022, 14, 1479. https://doi.org/10.3390/sym14071479
Hamzat JO, Oladipo AT, Oros GI. Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function. Symmetry. 2022; 14(7):1479. https://doi.org/10.3390/sym14071479
Chicago/Turabian StyleHamzat, Jamiu Olusegun, Abiodun Tinuoye Oladipo, and Georgia Irina Oros. 2022. "Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function" Symmetry 14, no. 7: 1479. https://doi.org/10.3390/sym14071479
APA StyleHamzat, J. O., Oladipo, A. T., & Oros, G. I. (2022). Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function. Symmetry, 14(7), 1479. https://doi.org/10.3390/sym14071479