A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate
Abstract
:1. Introduction
2. Proposed Structure of the MTM Unit Cell
3. Polarization Independence
4. Parametric Analysis of the Reflection and Absorption Coefficient
4.1. Effect of Conductor Type
4.2. Effect of Substrate Thickness
4.3. Effect of the Unit Cell Dimensions
4.4. Effect of Split Gap Variation
4.5. Effect of Substrate Type
5. Selection of the Proposed Metamaterial Unit Cell
6. Analysis of Different Software Simulations for the Proposed Design
7. Surface Current, Electric Field, and Magnetic Field Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulkarim, Y.I.; Deng, L.; Yang, J.-L.; Çolak, Ş.; Karaaslan, M.; Huang, S.-X.; He, L.-H.; Luo, H. Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. J. Cent. South Univ. 2020, 27, 1235–1246. [Google Scholar] [CrossRef]
- Wang, W.; Yan, F.; Tan, S.; Zhou, H.; Hou, Y. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 2017, 5, 571–577. [Google Scholar] [CrossRef]
- Ekmekci, E.; Turhan-Sayan, G. Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate. Appl. Phys. A 2013, 110, 189–197. [Google Scholar] [CrossRef]
- Dhama, R.; Yan, B.; Palego, C.; Wang, Z. Super-Resolution Imaging by Dielectric Super lenses: TiO2 Metamaterial Superlens versus BaTiO3 Super lens. Photonics 2021, 8, 222. [Google Scholar] [CrossRef]
- Haxha, S.; AbdelMalek, F.; Ouerghi, F.; Charlton, M.D.B.; Aggoun, A.; Fang, X.J.S.R. Metamaterial super lenses operating at visible wavelength for imaging applications. Sci. Rep. 2018, 8, 16119. [Google Scholar] [CrossRef] [Green Version]
- Manjappa, M.; Pitchappa, P.; Wang, N.; Lee, C.; Singh, R. Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv. Opt. Mater. 2018, 6, 1800141. [Google Scholar] [CrossRef]
- Islam, S.S.; Hasan, M.M.; Faruque, M.R.I. A new metamaterial-based wideband rectangular invisibility cloak. Appl. Phys. A 2018, 124, 160. [Google Scholar] [CrossRef]
- Imani, M.F.; Gollub, J.N.; Yurduseven, O.; Diebold, A.V.; Boyarsky, M.; Fromenteze, T.; Pulido-Mancera, L.; Sleasman, T.; Smith, D.R. Review of Metasurface Antennas for Computational Microwave Imaging. IEEE Trans. Antennas Propag. 2020, 68, 1860–1875. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Karaaslan, M.; Mahmud, R.H.; Hasan, S.O.; Işık, Ö.; Luo, H.; Huang, S. A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. Int. J. Antennas Propag. 2020, 2020, 8813951. [Google Scholar] [CrossRef]
- Alkurt, F.O.; Altintas, O.; Atci, A.; Bakir, M.; Unal, E.; Akgol, O.; Sabah, C. Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8 GHz. Opt. Eng. 2018, 57, 113102. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Altıntaş, O.; Ünal, E.; Karaaslan, M. Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 114, 113593. [Google Scholar] [CrossRef]
- Daniel, S.; Bawuah, P. Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz. Photonic Sens. 2019, 10, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M. Design and measurement of a narrow band metamaterial absorber in terahertz range. Opt. Mater. 2020, 100, 109712. [Google Scholar] [CrossRef]
- Meng, T.; Hu, D.; Zhu, Q. Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 2018, 415, 151–155. [Google Scholar] [CrossRef]
- Jain, P.; Bansal, S.; Prakash, K.; Sardana, N.; Gupta, N.; Kumar, S.; Singh, A.K. Graphene-based tunable multi-band metamaterial polarization-insensitive absorber for terahertz applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11878–11886. [Google Scholar] [CrossRef]
- Qi, L.; Liu, C.; Mohsin, S. Ali Shah A broad dual-band switchable graphene-based terahertz metamaterial absorber. Carbon 2019, 153, 179–188. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Muhammadsharif, F.F.; Bakır, M.; Awl, H.N.; Karaaslan, M.; Deng, L.; Huang, S. Hypersensitized Metamaterials Based on a Corona-Shaped Resonator for Efficient Detection of Glucose. Appl. Sci. 2021, 11, 103. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Luo, H.; Huang, S.; Karaaslan, M.; Altıntaş, O.; Bakır, M.; Muhammadsharif, F.F.; Awl, H.N.; Sabah, C.; et al. Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J. Mater. Res. Technol. 2020, 9, 10291–10304. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Altıntaş, O.; Awl, H.N.; Muhammadsharif, F.F.; Liao, C.; Unal, E.; Luo, H. Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sensors 2020, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarim, Y.I.; Deng, L.; Muhrram, K.; Eunal, U. Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chem. Phys. Lett. 2019, 732, 136655. [Google Scholar] [CrossRef]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Zou, H.; Cheng, Y. A thermally tunable terahertz three-dimensional perfect metamaterial absorber for temperature sensing application. Mod. Phys. Lett. B 2020, 34, 2050207. [Google Scholar] [CrossRef]
- Xu, C.; Qu, S.; Pang, Y.; Wang, J.; Yan, M.; Zhang, J.; Wang, Z.; Wang, W. Metamaterial absorber for frequency selective thermal radiation. Infrared Phys. Technol. 2018, 88, 133–138. [Google Scholar] [CrossRef]
- He, Y.; Wu, Q.; Yan, S. Multi-Band Terahertz Absorber at 0.1–1 THz Frequency Based on Ultra-Thin Metamaterial. Plasmonics 2019, 14, 1303–1310. [Google Scholar] [CrossRef]
- Jianjun, L.; Lanlan, F. Development of a tunable terahertz absorber based on temperature control. Microw. Opt. Technol. Lett. 2020, 62, 1681–1685. [Google Scholar] [CrossRef]
- Ito, K.; Watari, T.; Nishikawa, K.; Yoshimoto, H.; Iizuka, H. Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons. APL Photonics 2018, 3, 086101. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.-G.; Wang, Q.; Zhu, S.-N.; Liu, H. Controlling thermal emission by parity-symmetric fano resonance of optical absorbers in metasurfaces. ACS Photonics 2019, 6, 2671–2676. [Google Scholar] [CrossRef] [Green Version]
- Ustunsoy, M.P.; Sabah, C. Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers. J. Alloys Compd. 2016, 687, 514–520. [Google Scholar] [CrossRef]
- Hoque, A.; Islam, M.T. Numerical analysis of single negative broadband metamaterial absorber based on tri thin layer material in visible spectrum for solar cell energy harvesting. Plasmonics 2020, 15, 1061–1069. [Google Scholar] [CrossRef]
- Bagmanci, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Bakır, M.; Sabah, C. Solar energy harvesting with ultra-broadband metamaterial absorber. Int. J. Mod. Phys. B 2019, 33, 1950056. [Google Scholar] [CrossRef]
- Li, W.; Fan, S. Nano photonic control of thermal radiation for energy applications. Opt. Express 2018, 26, 15995–16021. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Z.; Zou, Q.; Hong, B.; Zhang, W.; Wang, G.P. Self-adaptive radiative cooling and solar heating based on a compound metasurface. J. Mater. Chem. C 2020, 8, 3192–3199. [Google Scholar] [CrossRef]
- Smith, E.M.; Chen, J.; Hendrickson, J.R.; Cleary, J.W.; Dass, C.; Reed, A.N.; Vangala, S.; Guo, J. Epsilon-near-zero thin-film metamaterials for wideband near-perfect light absorption. Opt. Mater. Express 2020, 10, 2439–2446. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, H.; Li, C. Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene. Opt. Mater. 2020, 109, 110369. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, Y.; Luo, H. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene. Materials 2020, 13, 860. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cheng, Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontiumtitanate (STO) resonator structure. Opt. Commun. 2020, 462, 125265. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, P.; Zhou, Z.; Chen, X.; Yi, Z.; Zhu, J.; Jile, H. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access 2020, 8, 85154–85161. [Google Scholar] [CrossRef]
- Wang, B.X.; He, Y.; Lou, P.; Xing, W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2020, 2, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Z.H.; Li, L.; Fan, Y.X.; Tao, Z.Y. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci. Rep. 2019, 9, 5751. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.L.; Cheng, Y.Z.; Cheng, Z.Z.; Chen, H.R.; Mao, X.S.; Gong, R.Z. Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene. Materials 2018, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, L.; Liu, J.; Yan, F.; Tian, F.; Tian, H.; Sun, W. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Opt. Express 2017, 25, 32280–32289. [Google Scholar] [CrossRef]
- Cheng, Y.; Zou, H.; Yang, J.; Mao, X.; Gong, R. Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Opt. Mater. Express 2018, 8, 3104. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, C.; Liang, C.; Yi, Z.; Chen, X.; Li, M.; Zhou, Z.; Tang, Y.; Yi, Y.; Zhang, G. Dual-band switchable terahertz metamaterial absorber based on metal nanostructure. Results Phys. 2019, 14, 102422. [Google Scholar] [CrossRef]
- Jain, P.; Singh, A.K.; Pandey, J.K.; Bansal, S.; Gupta, N.; Singh, A.K.; Kumar, S.; Sardana, N. Ultra-thin and Dual Band Metamaterial Absorber for Terahertz Applications. In Proceedings of the 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON), Rajpura, India, 16–17 November 2018; p. 8951284. [Google Scholar] [CrossRef]
- Wang, B.-X.; Tang, C.; Niu, Q.; He, Y.; Chen, T. Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers. Nanoscale Res. Lett. 2019, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Panwar, R. Investigation of graphene fractal frequency selective surface loaded terahertz absorber. Opt. Quantum Electron. 2020, 52, 317. [Google Scholar] [CrossRef]
- Zamzam, P.; Rezaei, P.; Khatami, S.A. Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114621. [Google Scholar] [CrossRef]
- Sayeed, M.A.; Rouf, H.K. Fabrication and Characterization of Zinc Selenide (ZnSe) Thin Film in Solar Cell Applications. In Proceedings of the International Conference on Innovations in Science, Engineering and Technology, Chittagong, Bangladesh, 27–28 October 2018. [Google Scholar] [CrossRef]
- Choudhari, U.; Jagtap, S. Hydrothermally Synthesized ZnSe Nanoparticles for Relative Humidity Sensing Application. J. Electron. Mater. 2020, 49, 5903–5916. [Google Scholar] [CrossRef]
- Zhenhong, W.; Feng, L.; Jia, G.; Chunyang, M.; Yufeng, S.; Zhenwu, H.; Jun, L.; Yupeng, Z.; Delong, L.; Han, Z. Facile Synthesis of 2D Tin Selenide for Near- and Mid-Infrared Ultrafast Photonics Applications. Adv. Opt. Mater. 2020, 8, 1902183. [Google Scholar] [CrossRef]
- Cheng, Y.; Gong, R.; Cheng, Z. A photo excited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt. Commun. 2016, 36, 41. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Huang, M.L.; Chen, H.R.; Guo, Z.Z.; Mao, X.S.; Gong, R.Z. Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves. Materials 2017, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarim, I.Y.; Fatih, O.A.; Halgurd, N.A.; Fahmi, F.F.; Mehmet, B.; Sekip, D.; Muharrem, K.; Heng, L. An ultrathin and dual band metamaterial perfect absorber based on ZnSe for the polarization-independent in terahertz range. Results Phys. 2021, 26, 104344. [Google Scholar] [CrossRef]
- Chen, H.-T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Nie, Y.; Gong, R. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Opt. Laser Technol. 2013, 48, 415–421. [Google Scholar] [CrossRef]
- Abdulkarim, I.Y.; Meiyu, X.; Halgurd, N.A.; Fahmi, F.F.; Lang, T.; Salah, R.S.; Fatih, O.A.; Mehmet, B.; Muharrem, K.; Jiang, D. Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate. Opt. Mater. Express 2022, 12, 338–359. [Google Scholar] [CrossRef]
- Hema, O.A.; Al-Hindawi, A.M.; Abdulkarim, Y.I.; Nugoolcharoenlap, E.; Tippo, T.; Alkurt, F.Ö.; Altıntas, O.; Karaaslan, M. Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications. Chin. Phys. B 2022, 31, 058401. [Google Scholar] [CrossRef]
- Tatjana, G.; Eldlio, M.; Cada, M.; Pistora, J. Analytic solution to field distribution in two-dimensional inhomogeneous waveguides. J. Electromagn. Waves Appl. 2015, 29, 1068–1081. [Google Scholar]
Parameter | Value (μm) |
---|---|
L | 8 |
W | 8 |
D | 0.5 |
r | 2 |
R | 2.5 |
l | 1.54 |
h1 | 0.03 |
h2 | 0.6 |
h3 | 0.03 |
g | 1.8 |
∆w | 1.15 |
Ref. | Shape of the MTM Unit Cell | Frequency Operating THz | Absorptivity (%) | Peak Numbers | ||
---|---|---|---|---|---|---|
[12] | Multiple metallic resonators | 2–5 | 36 × 36 | 2 | 100–97 | Dual |
[13] | cross metal array resonator | 12–28 | 4 × 4 | 1.5 | 99 | Single |
[14] | two nested metallic circular ring resonators | 0–4.5 | 80 × 80 | 18 | 99.96–98.92–99.83–99.35 and 99 | Five |
[15] | Gold resonator | 4–8 | 43.8 × 43.8 | 8.1 | 99.3–99.2–99.4 | Five |
95.2 and 98.1 | ||||||
[16] | Periodic cross-shaped grooves | 0–3.5 | 50 × 50 | 45 | 97.80–95.8 | Dual |
[22] | metallic cross-cave-patch (CCP) | 0.4–2.2 | 90 × 90 | 8 | 98.0, 99.6, 95.2, 97.9, 96.7 and 99.9 | Six |
[23] | metal square ring and four metallic cylinders | 1.2–2.5 | 60 × 60 | 7 | 99.9 | Single |
[43] | four-fold meander wire | 1–3 | 55 × 50 | 15 | 93–100 | Dual |
[44] | Au Reflector | 2–8 | 30 × 35 | 5 | 99–99 | Dual |
[45] | split ring dish resonator | 1.925–6.3 | 24 × 24 | 1.2 | 100–99–100 | Single/Dual |
[46] | Au rectangular strips | 0–4.05 | 60 × 60 | 2 | 100–99–99 | Triple |
[47] | graphene based meshed square patch FSS | 0–4 | 42 × 42 | 22 | 99–97 | Dual |
[52] | Single metallic resonator | 15–35 | 9.5 × 9.5 | 0.6 | 98.44–99.28 | Dual |
This Work | Single copper resonator | 13–40 | 8 × 8 | 0.6 | 99–99.85 and 92.25 | Triple |
Ref. | Techniques Used | Central Frequency | Absorption | Polarization | Angles | Year Published |
---|---|---|---|---|---|---|
[12] | Al/TiO2/Al | 3.5 | >90% | TE and TM | 0–90 | 2020 |
[13] | Metal layer/Dielectric layer/Metal layer | 20 | >90% | - | 0–50 | 2020 |
[14] | Copper/Polyimid/Silicon | 2.25 | >90% | - | 0–90 | 2018 |
[15] | Au/Graphene/SiO2/Au | 5.51 | >90% | TE and TM | 0–90 | 2020 |
[16] | Gold/SiO2/Graphene/SiO2 | 0.94 | >90% | - | - | 2019 |
[22] | Gold/InSb/gold | 1.3 | >90% | - | - | 2019 |
[23] | Gold/InSb/gold | 1.85 | >90% | TE and TM | 0–90 | 2020 |
[43] | Gold/PDMS/Gold | 2 | >90% | TE and TM | 0–90 | 2018 |
[44] | Au/SiO2/Au | 5 | >90% | - | - | 2019 |
[45] | Gold/SiO2/Gold | 4.375 | >90% | TE | 0–60 | 2018 |
[46] | Au/dielectric slab/Au | 2.25 | >90% | - | - | 2019 |
[47] | Graphene FSS/polyimide layer/perfect electric conductor (PEC) | 2 | >90% | TE | 0–60 | 2020 |
[48] | Copper/ZnSe/Copper | 25 | >90% | TE and TM | 0–60 | 2021 |
This Work | Metal/ZnSe/Metal | 27 | >90% | TE or TM | 0–90 | 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkarim, Y.I.; Özkan Alkurt, F.; Awl, H.N.; Altıntaş, O.; Muhammadsharif, F.F.; Appasani, B.; Bakır, M.; Karaaslan, M.; Taouzari, M.; Dong, J. A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate. Symmetry 2022, 14, 1477. https://doi.org/10.3390/sym14071477
Abdulkarim YI, Özkan Alkurt F, Awl HN, Altıntaş O, Muhammadsharif FF, Appasani B, Bakır M, Karaaslan M, Taouzari M, Dong J. A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate. Symmetry. 2022; 14(7):1477. https://doi.org/10.3390/sym14071477
Chicago/Turabian StyleAbdulkarim, Yadgar I., Fatih Özkan Alkurt, Halgurd N. Awl, Olcay Altıntaş, Fahmi F. Muhammadsharif, Bhargav Appasani, Mehmet Bakır, Muharrem Karaaslan, Mohamed Taouzari, and Jian Dong. 2022. "A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate" Symmetry 14, no. 7: 1477. https://doi.org/10.3390/sym14071477
APA StyleAbdulkarim, Y. I., Özkan Alkurt, F., Awl, H. N., Altıntaş, O., Muhammadsharif, F. F., Appasani, B., Bakır, M., Karaaslan, M., Taouzari, M., & Dong, J. (2022). A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate. Symmetry, 14(7), 1477. https://doi.org/10.3390/sym14071477