Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface
Abstract
1. Introduction
2. Design and Simulation
3. Experimental Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tak, J.; Choi, J. A wearable metamaterial microwave absorber. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 784–787. [Google Scholar] [CrossRef]
- Bilal, R.; Baqir, M.; Iftikhar, A.; Ali, M.; Rahim, A.; Akhtar, M.N.; Mughal, M.; Naqvi, S. A Novel Omega Shaped Microwave Absorber with Wideband Negative Refractive Index for C-Band Applications. Optik 2021, 242, 167278. [Google Scholar] [CrossRef]
- Mishra, R.K.; Gupta, R.D.; Datar, S. Metamaterial Microwave Absorber (MMA) for Electromagnetic Interference (EMI) Shielding in X-Band. Plasmonics 2021, 16, 2061–2071. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M.M.; SaeidNahaei, S.; Kim, J.S. Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J. Opt. 2022, 24, 025101. [Google Scholar] [CrossRef]
- Badri, S.H.; Soofi, H.; SaeidNahaei, S. Thermally reconfigurable extraordinary terahertz transmission using vanadium dioxide. JOSA B 2022, 39, 1614–1621. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Long, C.; Dong, B.W.; He, D.; Cheng, Q. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 2021, 29, 14078–14086. [Google Scholar] [CrossRef] [PubMed]
- Vafapour, Z.; Ghahraloud, H.; Keshavarz, A.; Islam, S.; Rashidi, A.; Dutta, M.; Stroscio, M.A. The potential of refractive index nanobiosensing using a multi-band optically tuned perfect light metamaterial absorber. IEEE Sens. J. 2021, 21, 13786–13793. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Z. Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption. Opt. Express 2021, 29, 21551–21561. [Google Scholar] [CrossRef] [PubMed]
- Victor, V.; Leonid, B.; Valery, S.; Christian, H. Negative refractive index materials. J. Comput. Theor. Nanosci. 2006, 3, 189–218. [Google Scholar]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and Negative Refractive Index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, P.; Lin, Y. Tunable split-disk metamaterial absorber for sensing application. Nanomaterials 2021, 11, 598. [Google Scholar] [CrossRef]
- Dănilă, O. Spectroscopic assessment of a simple hybrid si-Au cell metasurface-based sensor in the mid-infrared domain. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107209. [Google Scholar] [CrossRef]
- Wang, J.; Lang, T.; Hong, Z.; Xiao, M.; Yu, J. Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials 2021, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Xu, Z.; Li, K.; Wang, M.; Xie, W.; Luo, Q.; Chen, B.; Kong, W.; Yun, M. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Opt. Express 2021, 29, 7158–7167. [Google Scholar] [CrossRef] [PubMed]
- Dănilă, O. Polyvinylidene fluoride-based metasurface for high-quality active switching and spectrum shaping in the terahertz g-band. Polymers 2021, 13, 1860. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, F.; Ramahi, O.M. A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech. 2021, 69, 4021–4028. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, M.; Yao, Y.; Guo, X.; Huang, Y.; Peng, Z.; Xu, B.; Lv, B.; Tao, R.; Duan, S.; et al. Recent progress in the design and fabrication of multifunctional structures based on metamaterials. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100883. [Google Scholar] [CrossRef]
- Guillen, C.; Montero, J.; Herrero, J. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance. Appl. Surf. Sci. 2016, 384, 45–50. [Google Scholar] [CrossRef]
- Liu, H.; Wang, P.; Wu, J.; Yan, X.; Zhang, Y.; Zhang, X. Analysis of terahertz wave on increasing radar cross section of 3D conductive model. Electronics 2021, 10, 74. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Cui, T.; Qi, M.; Wan, X.; Zhao, J.; Cheng, Q. Coding Metamaterials, Digital Metamaterials and Programming Metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar]
- Liu, B.; He, Y.; Wong, S.; Li, Y. Experimental demonstration of a time-domain digital-coding metasurface for a Doppler cloak. Opt. Express 2021, 29, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Lai, S.; Zhu, X.; Gu, W. A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Adv. 2019, 9, 025309. [Google Scholar] [CrossRef]
- Im, H.R.; Noh, Y.H.; Hong, I.P.; Kwon, S.H.; Yoon, Y.J.; Hwang, M.J.; Choi, K.S.; Yook, J.G. Monostatic RCS Measurement for Transparent Conducting Oxide Coated Dielectric. J. Korean Inst. Electromagn. Eng. Sci. 2019, 30, 762–769. [Google Scholar] [CrossRef]
- Du, Z.; Liang, J.; Cai, T.; Wang, X.; Zhang, Q.; Deng, T.; Wu, B.; Mao, R.; Wang, D. Ultra-light Plane Meta-absorber with Wideband and Full-polarization Properties. Opt. Express 2021, 29, 6434–6444. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Wan, Z.; Li, Y.; Li, R.; Li, H.; Cao, Q. Design and analysis of an optically transparent ultra-wideband absorber covering C-, X-, ku-, k-, ka-bands. Opt. Mater. Express 2022, 12, 1512–1521. [Google Scholar] [CrossRef]
- Yang, D.; Yin, Y.; Zhang, Z.; Li, D.; Cao, Y. Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing. Mater. Lett. 2020, 281, 128571. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, S.; Jiang, Z.; Yan, L.; Wang, B.-Z. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 591–595. [Google Scholar] [CrossRef]
- Xiao, H.; Qu, Z.; Lv, M.; Du, H.; Zhu, W.; Wang, C.; Qin, R. Optically transparent broadband and polarization insensitive microwave metamaterial absorber. J. Appl. Phys. 2019, 126, 135107. [Google Scholar] [CrossRef]
hs | hp | w | p | r | RS1 | RS2 |
---|---|---|---|---|---|---|
0.3 mm | 5.6 mm | 13 mm | 30 mm | 3 mm | 110 Ω | 8 Ω |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.; Liu, G.; Guo, Y.; Liu, Y. Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface. Symmetry 2022, 14, 2217. https://doi.org/10.3390/sym14102217
Lai S, Liu G, Guo Y, Liu Y. Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface. Symmetry. 2022; 14(10):2217. https://doi.org/10.3390/sym14102217
Chicago/Turabian StyleLai, Senfeng, Guiyang Liu, Yanpei Guo, and Yang Liu. 2022. "Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface" Symmetry 14, no. 10: 2217. https://doi.org/10.3390/sym14102217
APA StyleLai, S., Liu, G., Guo, Y., & Liu, Y. (2022). Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface. Symmetry, 14(10), 2217. https://doi.org/10.3390/sym14102217