Next Article in Journal
On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales
Next Article in Special Issue
Some Companions of Fejér-Type Inequalities for Harmonically Convex Functions
Previous Article in Journal
On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities
Previous Article in Special Issue
Some Rational Approximations and Bounds for Bateman’s G-Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l)

1
Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2
Mathematics and Computer Sciences Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
3
Mathematics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(7), 1420; https://doi.org/10.3390/sym14071420
Submission received: 4 June 2022 / Revised: 27 June 2022 / Accepted: 8 July 2022 / Published: 11 July 2022
(This article belongs to the Special Issue Mathematical Inequalities, Special Functions and Symmetry)

Abstract

:
Symmetrical patterns exist in the nature of inequalities, which play a basic role in theoretical and applied mathematics. In several studies, inequalities present accurate approximations of functions based on their symmetry properties. In the paper, we prove the completely monotonic (CM) property of some functions involving the function Δ ( l ) = ψ ( l ) + ψ ( l ) 2 and hence we deduce a new double inequality for it. Additionally, we study the CM degree of some functions involving the function ψ ( l ) . Our new bounds takes priority over some of the recently published results.

1. Introduction and Preliminaries

The Psi (or Digamma) function ψ is defined by [1]
ψ ( l ) = Γ ( l ) Γ ( l ) ,
where the ordinary Euler’s gamma function Γ is defined
Γ ( l ) = 0 e α α l 1 d α , l > 0 .
The two functions ψ ( l ) and ψ ( l ) are called the tri- and tetra-gamma functions, respectively. The polygamma functions ψ ( r ) ( l ) have several applications in special functions, applied mathematics and physics [2]. For example, several series involving polygamma functions formed in Feynman’s calculations [3] and in some mesh-free numerical methods, the digamma function use as family of basis functions for solving some partial differential equations [4].
For a function K defined on l 0 , if the derivatives K ( r ) ( l ) exist for all r 0 with
( 1 ) r K ( r ) ( l ) 0 , l 0 ; r 0
then it is called CM [5] on the interval l 0 . Bernstein–Widder theorem states that [6], the function K ( l ) is CM on l 0 if, and only if, it is a Laplace transform of a bounded and non-decreasing measure.
Alzer deduced the inequality [7]
h ( l ) 900 l 4 ( l + 1 ) 10 < Δ ( l ) , l > 0
where
h ( l ) = 450 + 3600 l + 13290 l 2 + 29700 l 3 + 44101 l 4 + 45050 l 5 + 31865 l 6 + 15370 l 7 + 4840 l 8 + 900 l 9 + 75 l 10 .
Guo et al. presented the CM property of the function [8]
Δ ( l ) h ( l ) 900 l 4 ( l + 1 ) 10 , l > 0 .
Zhao et al. deduced the CM property of the functions [9]
Δ ( l ) l 2 + 12 12 ( l + 1 ) 2 l 4 and Δ ( l ) + l + 12 12 ( l + 1 ) l 4 , l > 0 .
Additionally, they deduced the inequality
l 2 + 12 12 ( 1 + l ) 2 l 4 < Δ ( l ) < l + 12 12 ( 1 + l ) l 4 , l > 0 .
The lower bounds of the inequalities (3) and (4) overlap each other.
Qi deduced the CM property of the function [10]
Δ ( l ) l 2 + μ l + 12 12 ( l + 1 ) 2 l 4 , l > 0
if, and only if, μ 0 and so its negative if, and only if, μ 4 . Additionally, he proved
l 2 + ω l + 12 12 ( l + 1 ) 2 l 4 < Δ ( l ) < l 2 + ν l + 12 12 ( l + 1 ) 2 l 4 , l > 0
if, and only if, ω 0 and ν 4 . In case of ν = 4 and ω = 0 , inequality (5) refines the upper bound and recovers the lower bound and of inequality (4). In 2022, Anis et al. presented the double inequality [11]
l 2 + 3 l + 3 3 l 4 ( 2 l + 1 ) 2 < Δ ( l ) < 625 l 2 + 2275 l + 5043 3 l 4 ( 50 l + 41 ) 2 , l > 0
which improves the upper bound of inequality (5) for l > 0 and its lower bound for l > 849 + 9 32 .
Qi and Agarwal [12] presented a survey about the function Δ ( l ) contains inequalities, generalizations, q-analogous, CM property, several applications and pose some open problems. For more results about the function Δ ( l ) , we refer to [13,14,15,16,17,18,19,20,21,22] and the literature listed therein.
Let K ( l ) be a CM function on l > 0 and use the notation K ( ) = lim l K ( l ) . If l ϱ K ( l ) K ( ) is CM function on l > 0 if, and only if, ϱ [ 0 , η ] , then the number η R is called the CM degree of K ( l ) on l > 0 and is denoted by deg cm l [ K ( l ) ] = η . This concept is more accurately in measuring the CM property [9,23,24].
Qi deduced that [25]
deg cm l [ Δ ( l ) ] = 4
and Zhao et al. deduced that [9]
deg cm l Δ ( l ) δ ( l ) 1800 ( l + 2 ) 10 ( l + 1 ) 10 l 2 = 1 ,
where δ ( l ) is a finite polynomial of degree 21 has positive coefficients. For more results about the concept of CM degree, we refer to [12,16,24,26,27,28], and the references therein.
In this paper, we prove the CM property of the functions
Δ ( l ) 105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8 and Δ ( l ) + 15 l 2 + 30 l + 23 180 l 6 , l > 0
and deduce the inequality
105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8 < Δ ( l ) < 15 l 2 + 30 l + 23 180 l 6 , l > 0
which improve the lower bound of inequality (6) for l 1.2287 and its upper bound for l 1.7254 . Additionally, we study the CM degree of two functions involving ψ ( l ) .

2. Studying of Two CM Functions Involving ψ ( l )

In the following sequel, we will use the following Lemma [29]:
Lemma 1.
1 l κ = 1 Γ ( κ ) 0 α κ 1 e l α d α , κ , l > 0 .
Now, we will study two CM functions involving ψ ( l ) and deduce some new bounds of it.
Lemma 2.
The function
P ( l ) = ψ ( l ) k ( l ) 2520 l 6 ( l + 1 ) 8
is CM on ( 0 , ) , where
k ( l ) = 2520 l 13 + 21420 l 12 + 81060 l 11 + 179760 l 10 + 258636 l 9 + 252168 l 8 + 168228 l 7 + 74466 l 6 + 16212 l 5 6279 l 4 8862 l 3 4767 l 2 1354 l 164 .
Proof. 
Using the Formula (7) and
( 1 ) r ψ ( r ) ( l ) = 0 α r e l α e α 1 d α , r N , l > 0 ,
we have
P ( l ) = 0 e α 6350400 e α 1 p ( α ) e l α d α , l > 0 ,
where
p ( α ) = 82 α 7 1001 α 6 1701 α 5 + 16170 α 4 + 64680 α 3 264600 α + e 2 α ( 3444 α 5 + 4410 α 4 67620 α 3 264600 α 2 + 2910600 α 6350400 ) + e α ( 82 α 7 + 1001 α 6 1743 α 5 20580 α 4 + 2940 α 3 + 264600 α 2 + 3704400 α + 6350400 ) = 3444 α 5 + 4410 α 4 67620 α 3 264600 α 2 + 2910600 α 6350400 n = 0 2 n α n n ! + ( 82 α 7 + 1001 α 6 1743 α 5 20580 α 4 + 2940 α 3 + 264600 α 2 + 3704400 α + 6350400 ) n = 0 α n n ! + 82 α 7 1001 α 6 1701 α 5 + 16170 α 4 + 64680 α 3 264600 α = 11125 α 10 6 + 2472 α 9 + 1080 α 8 + n = 11 λ n α n n !
with
λ n = 82 n 7 + 2723 n 6 + 861 n 5 2 n 3 31108 n 5 + 2205 n 4 2 n 3 861 n 4 2 n 2 861 n 4 2 n + 142205 n 4 + 2583 n 3 2 n 3 2205 n 3 2 n 2 9555 n 3 2 n + 861 n 3 2 n + 2 292978 n 3 + 6615 n 2 2 n 3 2583 n 2 2 n 2 + 7161 n 2 2 n 861 n 2 2 n + 2 735 n 2 2 n + 6 + 535472 n 2 6615 n 2 n 2 + 188391 n 2 n + 3 + 3348168 n ( 99225 ) 2 n + 6 + 6350400 = 1 8 ( 656 n 7 + 21784 n 6 + 861 n 5 2 n 248864 n 5 6405 n 4 2 n + 1137640 n 4 50715 n 3 2 n 2343824 n 3 345135 n 2 2 n + 4283776 n 2 + 6021897 n 2 n + 1 + 26785344 n ( 99225 ) 2 n + 9 + 50803200 ) = 1 8 4283776 n 2 + 26785344 n + 50803200 + λ 1 , n + λ 2 , n + λ 3 , n ,
where
λ 1 , n = 82 n 5 2 n 656 n 7 = 82 n 5 2 n 8 n 2 > 0 , n 10 λ 2 , n = 21784 n 6 248864 n 5 + 1137640 n 4 2343824 n 3 = 56 n 3 389 n 3 4444 n 2 + 20315 n 41854 ) > 0 , n 6
and
λ 3 , n = 779 n 5 2 n 6405 n 4 2 n 50715 n 3 2 n 345135 n 2 2 n + 6021897 n 2 n + 1 ( 99225 ) 2 n + 9 = 2 n 779 n 5 6405 n 4 50715 n 3 345135 n 2 + 12043794 n 50803200 > 0 , n 11 .
Then, λ n > 0 for n 11 and, hence, p ( α ) > 0 for α > 0 . Then, P ( l ) is CM function for l > 0 . □
Corollary 1.
The following inequality holds
k ( l ) 2520 l 6 ( l + 1 ) 8 < ψ ( l ) , l > 0 ,
where
k ( l ) = 2520 l 13 + 21420 l 12 + 81060 l 11 + 179760 l 10 + 258636 l 9 + 252168 l 8 + 168228 l 7 + 74466 l 6 + 16212 l 5 6279 l 4 8862 l 3 4767 l 2 1354 l 164 .
Proof. 
Using the decreasing property of P ( l ) , and the asymptotic expansion [29]
ψ ( l ) 1 l + 1 2 l 2 + r = 2 B r l r + 1 , l
where the Bernoulli number B r is defined by [30]
z e z 1 = r = 0 B r r ! z r , | z | < 2 π
we get lim l P ( l ) = 0 and hence P ( l ) > 0 for l > 0 . □
Lemma 3.
The function
Q ( l ) = j ( l ) 360 l 4 ( l + 1 ) 6 ψ ( l )
is CM for l > 0 , where
j ( l ) = 360 l 9 + 2340 l 8 + 6540 l 7 + 10260 l 6 + 9888 l 5 + 6030 l 4 + 2440 l 3 + 720 l 2 + 168 l + 23 .
Proof. 
Using the Formulas (7) and (9), we get
Q ( l ) = 0 e α 43200 e α 1 q ( α ) e l α d α , l > 0
where
q ( α ) = 23 e α α 5 + 23 α 5 + 80 e α α 4 80 α 4 20 e α α 3 + 460 e 2 α α 3 440 α 3 1800 e α α 2 + 1800 e 2 α α 2 25200 e α α 19800 e 2 α α + 1800 α 43200 e α + 43200 e 2 α = 23 α 5 80 α 4 440 α 3 + 1800 α + 20 n = 0 2 n α n n ! 23 α 3 + 90 α 2 990 α + 2160 n = 0 α n n ! 23 α 5 80 α 4 + 20 α 3 + 1800 α 2 + 25200 α + 43200 = 126591853 α 17 1482030950400 + 1153427 α 16 1981324800 + 4982647 α 15 1362160800 + 23559 α 14 1121120 + 161929 α 13 1482624 + 6019 α 12 11880 + 32629 α 11 15840 + 36059 α 10 5040 + 2573 α 9 126 + 314 α 8 7 + 1391 α 7 21 + 42 α 6 + n = 18 τ n α n n !
with
τ n = 23 n 5 + 310 n 4 + 115 n 3 2 n 1 1305 n 3 + 555 n 2 2 n 1 + 290 n 2 10235 n 2 n 24472 n + ( 675 ) 2 n + 6 43200 = τ 1 , n + τ 2 , n + τ 3 , n .
Now
τ 3 , n = 290 n 2 24472 n + ( 675 ) 2 n + 6 43200 > 43490 n 2 24472 n 43200 > 0 , n > 1 .
and
τ 2 , n = 35 n 3 2 n 1 + 555 n 2 2 n 1 10235 n 2 n = 5 n 2 n 1 7 n 2 + 111 n 4094 > 0 , n 18 .
Additionally, using the inequality n 2 < 2 n , we get
τ 1 , n = 23 n 5 + 310 n 4 + 80 n 3 2 n 1 1305 n 3 = n 3 23 n 2 310 n ( 40 ) 2 n + 1305 > n 3 17 n 2 + 310 n 1305 > 0 , n 4 .
Then, q ( v ) > 0 for v > 0 , and hence the function Q ( l ) is CM for l > 0 . □
Corollary 2.
The following inequality holds
j ( l ) 360 l 4 ( l + 1 ) 6 > ψ ( l ) , l > 0 .
where
j ( l ) = 360 l 9 + 2340 l 8 + 6540 l 7 + 10260 l 6 + 9888 l 5 + 6030 l 4 + 2440 l 3 + 720 l 2 + 168 l + 23 .
Proof. 
Using the decreasing property of Q ( l ) , and the asymptotic expansion (12), we get lim l Q ( l ) = 0 and then Q ( l ) > 0 for l > 0 . □

3. Two CM Functions Involving Δ ( l ) and Its New Inequality

In this section, we will study two CM functions involving Δ ( l ) and hence we will deduce a new inequality for this function.
Theorem 1.
The functions
H 1 ( l ) = Δ ( l ) 105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8
and
H 2 ( l ) = Δ ( l ) + 15 l 2 + 30 l + 23 180 l 6
are CM on ( 0 , ) .
Proof. 
Using recursion formula [29]
ψ ( l + 1 ) ψ ( l ) = 1 l , l > 0
we have
H 1 ( l ) H 1 ( l + 1 ) = ψ ( l ) ψ ( l + 1 ) ψ ( l + 1 ) + ψ ( l ) + ψ ( l ) ψ ( l + 1 ) 1 1260 l 8 ( l + 1 ) 8 ( 420 l 11 + 3360 l 10 + 11676 l 9 + 22848 l 8 + 27108 l 7 + 19026 l 6 + 3612 l 5 7539 l 4 8862 l 3 4767 l 2 1354 l 164 ) = 2 l 2 P ( l ) .
The CM property is closed under multiplication and, hence, the product of the functions 2 l 2 and P ( l ) is CM for l > 0 . Hence the difference H 1 ( l ) H 1 ( l + 1 ) is CM for l > 0 , and then the function H 1 ( l ) is also CM for l > 0 , see [10]. Now, using the recursion formula (16), we get
H 2 ( l ) H 2 ( l + 1 ) = ψ ( l + 1 ) ψ ( l ) ψ ( l ) + ψ ( l + 1 ) + ψ ( l + 1 ) ψ ( l ) + 60 l 7 + 360 l 6 + 888 l 5 + 1170 l 4 + 1000 l 3 + 540 l 2 + 168 l + 23 180 l 6 ( l + 1 ) 6 = 2 l 2 Q ( l ) .
Hence, the functions H 2 ( l ) H 2 ( l + 1 ) , and H 2 ( l ) are CM for l > 0 . □
Corollary 3.
The following inequality holds
105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8 < Δ ( l ) < 15 l 2 + 30 l + 23 180 l 6 , l > 0 .
Proof. 
Using the Formula (12) and its derivative
ψ ( l ) 1 l 2 1 l 3 r = 2 ( r + 1 ) B r l r + 2 , l
we obtain lim l H 1 ( l ) = 0 and then H 1 ( l ) > 0 for l > 0 , that is
105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8 < Δ ( l ) , l > 0 .
Additionally, using the Formulas (12) and (18), we get lim l H 2 ( l ) = 0 , and hence H 2 ( l ) > 0 for l > 0 , that is
Δ ( l ) < 15 l 2 + 30 l + 23 180 l 6 , l > 0 .
 □
Remark 1.
The upper bound of inequality (17) is better than the upper bound of inequality (6) for x > 41 1765 + 12 37105 96865 1.7254 . Additionally, the lower bound of inequality (17) is better than the lower bound of inequality (6) for x 1.2287 . That is, our new bounds in inequality (17) takes priority over the bounds of inequality (6) except near the origin point.

4. Studying the CM Degrees of Two Functions Involving ψ ( l )

Theorem 2.
The CM degree of the function P ( l ) is 1 on ( 0 , ) .
Proof. 
Using the relation (10), we get
l P ( l ) = 0 e α 635400 e α 1 2 θ ( α ) e l α d α , l > 0 ,
where
θ ( α ) = 82 α 7 1575 α 6 + 4305 α 5 + 24675 α 4 194040 α 2 264600 α + 264600 + 420 e 3 α 41 α 4 + 42 α 3 483 α 2 1260 α + 6930 2 e α 82 α 7 1575 α 6 + 4305 α 5 + 16065 α 4 8820 α 3 92610 α 2 + 1984500 + e 2 α 82 α 7 1575 α 6 + 4305 α 5 9765 α 4 35280 α 3 + 211680 α 2 5556600 α + 793800 = n = 8 ς n α n n !
with
ς n = 41 n 7 2 n 6 164 n 7 609 n 6 2 n 4 + 6594 n 6 + 19705 n 5 2 n 5 84560 n 5 144585 n 4 2 n 5 + 5740 n 4 3 n 3 + 442260 n 4 + 674429 n 3 2 n 6 5600 n 3 3 n 2 1066016 n 3 + 1434783 n 2 2 n 5 598360 n 2 3 n 3 + 1361766 n 2 1384460 n 3 n 2 2829735 n 2 n 659880 n + ( 99225 ) 2 n + 3 + ( 107800 ) 3 n + 3 3969000 = 164 n 7 + 6594 n 6 84560 n 5 + 442260 n 4 1066016 n 3 + 1361766 n 2 659880 n 3969000 + 3 n 5740 n 4 27 5600 n 3 9 598360 n 2 27 1384460 n 9 + 2910600 + 2 n 41 n 7 64 609 n 6 16 + 19705 n 5 32 144585 n 4 32 + 674429 n 3 64 + 1434783 n 2 32 2829735 n + 793800
> 164 n 7 + 6594 n 6 84560 n 5 + 442260 n 4 1066016 n 3 + 1361766 n 2 659880 n 3969000 + 5740 n 4 27 5600 n 3 9 598360 n 2 27 1384460 n 9 + 2910600 n 2 + 41 n 7 64 609 n 6 16 + 19705 n 5 32 144585 n 4 32 + 674429 n 3 64 + 1434783 n 2 32 2829735 n + 793800 n 2 = 41 n 9 64 609 n 8 16 + 14457 n 7 32 + 1977101 n 6 864 42995099 n 5 576 + 401704261 n 4 864 36446219 n 3 9 + 5066166 n 2 659880 n 3969000 = ς 1 , n + ς 2 , n + ς 3 , n .
Now, using the inequalities
ς 1 , n = 41 n 9 64 609 n 8 16 + 14457 n 7 32 > 0 , n 44
ς 2 , n = 1977101 x 6 864 42995099 x 5 576 + 401704261 x 4 864 36446219 x 3 9 = n 3 3954202 n 3 128985297 n 2 + 803408522 n 6997674048 1728 > 0 , n 28
and
ς 3 , n = 5066166 n 2 659880 n 3969000 > 0 , n 1
we obtain that ς n > 0 for n 44 . Furthermore, direct calculations by Mathematica software, n = 8 44 ς n α n n ! has positive coefficients. Hence, ς n > 0 for n 8 , and θ ( α ) > 0 for α > 0 . Then, l P ( l ) is CM function for l > 0 and we get
deg cm x [ P ( l ) ] 1 .
If we suppose that l ε P ( l ) is CM for l > 0 , then the function l ε P ( l ) is decreasing, that is
ε l P ( l ) P ( l ) = x ξ ( l ) ψ ( l ) ξ ( l ) ψ ( l ) ,
where
ξ ( l ) = s ( l ) 2520 l 6 ( l + 1 ) 8
with
s ( l ) = 2520 l 13 + 21420 l 12 + 81060 l 11 + 179760 l 10 + 258636 l 9 + 252168 l 8 + 168228 l 7 + 74466 l 6 + 16212 l 5 6279 l 4 8862 l 3 4767 l 2 1354 l 164 .
Using the relation [31]
ψ ( m ) ( l ) = ( 1 ) m + 1 m ! j = 0 1 ( j + l ) r + 1 , l > 0 ; m = 1 , 2 , 3 , . . .
we get
lim l 1 l + l ψ ( l ) = 1 a n d lim l 2 l + l 2 ψ ( l ) = 1 .
Additionally,
lim l 1 l + l ξ ( l ) = 1 a n d lim l 2 l + l 2 ξ ( l ) = 1 .
Then,
ε l 2 ψ ( l ) + 2 l l 2 ξ ( l ) + 2 l l ψ ( l ) 1 l l ξ ( l ) 1 l 1 a s l
and hence we get
deg cm l [ P ( l ) ] 1 .
Combining inequalities (19) and (20) completes the proof. □
Theorem 3.
The CM degree of Q ( l ) on ( 0 , ) satisfies
2 deg cm l [ Q ( l ) ] < 3 .
Proof. 
Using the integral representation (10), we have
l 2 Q ( l ) = 0 e α 43200 e α 1 2 σ ( α ) e l α d α , l > 0 ,
where
σ ( α ) = 23 α 5 + 310 α 4 660 α 3 1680 α 2 + 2760 e α α + 840 α + 3600 e α + 3600 = ( 2760 α + 3600 ) n = 5 α n n ! + 92 α 5 + 920 α 4 + 1320 α 3 + 2880 α 2 + 7200 α + 7200 > 0 .
Then,
deg cm l [ Q ( l ) ] 2 .
Additionally,
l 3 Q ( l ) = 0 e α 43200 χ ( α ) e l α d v , l > 0
where
χ ( α ) = 23 α 5 425 α 4 + 1900 α 3 300 α 2 4200 α + 2760 e α 2760 .
Using χ ( 1 ) = 1740.46 and χ ( 0.2 ) = 226.401 , we have
deg cm l [ Q ( l ) ] < 3 .
Combining inequalities (21) and (22) completes the proof. □

5. Conclusions

The main conclusions of this paper are stated in Theorems 1–3. For the function Δ ( l ) = ψ ( l ) + ψ ( l ) 2 , we investigate the complete monotonicity of the functions
H 1 ( l ) = Δ ( l ) 105 l 4 + 210 l 3 + 161 l 2 42 l 164 1260 l 8 and H 2 ( l ) = Δ ( l ) + 15 l 2 + 30 l + 23 180 l 6 , l > 0 .
Hence, we present a double inequality for Δ ( l ) . Additionally, for the two functions
P ( l ) = ψ ( l ) 1 2520 l 6 ( l + 1 ) 8 ( 2520 l 13 + 21420 l 12 + 81060 l 11 + 179760 l 10 + 258636 l 9 + 252168 l 8 + 168228 l 7 + 74466 l 6 + 16212 l 5 6279 l 4 8862 l 3 4767 l 2 1354 l 164 ) ,
and
Q ( l ) = ψ ( l ) + 1 360 l 4 ( l + 1 ) 6 ( 360 l 9 + 2340 l 8 + 6540 l 7 + 10260 l 6 + 9888 l 5 + 6030 l 4 + 2440 l 3 + 720 l 2 + 168 l + 23 )
we prove that deg cm l [ P ( l ) ] = 1 and 2 deg cm l [ Q ( l ) ] < 3 and then we deduce double inequality of the function ψ ( l ) .

Author Contributions

Writing to Original draft, O.A., A.T. and M.M. All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Andrews, G.E.; Askey, R.A.; Roy, R. Special Functions; Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  2. Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions, with applications. Math. Comput. 2005, 74, 723–742. [Google Scholar] [CrossRef] [Green Version]
  3. Miller, A.R. Summations for certain series containing the digamma function. J. Phys. A Math. Gen. 2006, 39, 3011–3020. [Google Scholar] [CrossRef]
  4. Wilkins, B.D.; Hromadka, T.V. Using the digamma function for basis functions in mesh-free computational methods. Eng. Anal. Bound. Elem. 2021, 131, 218–227. [Google Scholar] [CrossRef]
  5. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1993. [Google Scholar]
  6. Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
  7. Alzer, H. Sharp inequalities for the digamma and polygamma functions. Forum Math. 2004, 16, 181–221. [Google Scholar] [CrossRef]
  8. Guo, B.-N.; Zhao, J.-L.; Qi, F. A completely monotonic function involving the tri- and tetra-gamma functions. Math. Slovaca 2013, 63, 469–478. [Google Scholar] [CrossRef] [Green Version]
  9. Zhao, J.-L.; Guo, B.-N.; Qi, F. A completely monotonic function involving the tri-gamma function and with degree one. Appl. Math. Comput. 2012, 218, 9890–9897. [Google Scholar]
  10. Qi, F. Complete monotonicity of a function involving the tri- and tetra-gamma functions. Proc. Jangjeon Math. Soc. 2015, 18, 253–264. [Google Scholar]
  11. Anis, M.; Almuashi, H.; Mahmoud, M. Complete monotonicity of functions related to Trigamma and Tetragamma functions. Comput. Model. Eng. Sci. 2022, 131, 263–275. [Google Scholar] [CrossRef]
  12. Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. 2019, 2019, 36. [Google Scholar] [CrossRef] [Green Version]
  13. Batir, N. On some properties of digamma and polygamma functions. J. Math. Anal. Appl. 2007, 328, 452–465. [Google Scholar] [CrossRef] [Green Version]
  14. Guo, B.-N.; Qi, F.; Srivastava, H.M. Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions. Integral Transforms Spec. Funct. 2010, 21, 849–858. [Google Scholar] [CrossRef] [Green Version]
  15. Guo, B.-N.; Qi, F. A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. J. Korean Math. Soc. 2011, 48, 655–667. [Google Scholar] [CrossRef] [Green Version]
  16. Koumandos, S. Monotonicity of some functions involving the gamma and psi functions. Math. Comp. 2008, 77, 2261–2275. [Google Scholar] [CrossRef]
  17. Qi, F. Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2015, 109, 419–429. [Google Scholar] [CrossRef]
  18. Qi, F.; Guo, B.-N. Complete monotonicity of divided differences of the di- and tri-gamma functions with applications. Georgian Math. J. 2016, 23, 279–291. [Google Scholar] [CrossRef] [Green Version]
  19. Qi, F. Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be monotonic. Turkish J. Inequal. 2021, 5, 50–59. [Google Scholar]
  20. Qi, F. Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving trigamma function. Appl. Anal. Discrete Math. 2021, 15, 378–392. [Google Scholar] [CrossRef]
  21. Qi, F. Two monotonic functions defined by two derivatives of a function involving trigamma function. TWMS J. Appl. Eng. Math. 2022, 13, 91–104. [Google Scholar]
  22. You, X.; Han, M. Continued fraction approximation for the Gamma function based on the Tri-gamma function. J. Math. Anal. Appl. 2018, 457, 389–395. [Google Scholar] [CrossRef]
  23. Guo, B.-N.; Qi, F. Complete monotonicity of two functions involving the tri- and tetra-gamma functions. Period. Math. Hungar. 2012, 65, 147–155. [Google Scholar]
  24. Koumandos, S.; Lamprecht, M. Complete monotonicity and related properties of some special functions. Math. Comp. 2013, 82, 1097–1120. [Google Scholar] [CrossRef] [Green Version]
  25. Qi, F. Completely monotonic degree of a function involving the trigamma and tetragamma functions. AIMS Math. 2020, 5, 3391–3407. [Google Scholar] [CrossRef]
  26. Guo, B.-N.; Qi, F. On the degree of the weighted geometric mean as a complete Bernstein function. Afr. Math. 2015, 26, 1253–1262. [Google Scholar] [CrossRef]
  27. Qi, F.; Wang, S.-H. Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2014, 2, 91–97. [Google Scholar] [CrossRef] [Green Version]
  28. Qi, F. Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions. Math. Inequal. Appl. 2015, 18, 493–518. [Google Scholar] [CrossRef] [Green Version]
  29. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications, Inc.: New York, NY, USA, 1970. [Google Scholar]
  30. Shuang, Y.; Guo, B.-N.; Qi, F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. Real Acad. Cienc. Exactas FÍsicas Nat. Ser. MatemÁticas 2021, 115, 135. [Google Scholar] [CrossRef]
  31. Alzer, H. On some inequalities for the gamma and psi functions. Math. Comput. 1997, 66, 373–389. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ahfaf, O.; Talat, A.; Mahmoud, M. Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l). Symmetry 2022, 14, 1420. https://doi.org/10.3390/sym14071420

AMA Style

Ahfaf O, Talat A, Mahmoud M. Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l). Symmetry. 2022; 14(7):1420. https://doi.org/10.3390/sym14071420

Chicago/Turabian Style

Ahfaf, Omelsaad, Ahmed Talat, and Mansour Mahmoud. 2022. "Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l)" Symmetry 14, no. 7: 1420. https://doi.org/10.3390/sym14071420

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop