Next Article in Journal
Stability and Sensitivity Analysis of the COVID-19 Spread with Comorbid Diseases
Next Article in Special Issue
A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications
Previous Article in Journal
Generalized Fuzzy Linguistic Bicubic B-Spline Surface Model for Uncertain Fuzzy Linguistic Data
Previous Article in Special Issue
Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Companions of Fejér-Type Inequalities for Harmonically Convex Functions

by
Muhammad Amer Latif
Department of Basic Sciences, Deanship of Preparatory Year, King Faisal University, Hofuf 31982, Saudi Arabia
Symmetry 2022, 14(11), 2268; https://doi.org/10.3390/sym14112268
Submission received: 22 September 2022 / Revised: 18 October 2022 / Accepted: 23 October 2022 / Published: 28 October 2022
(This article belongs to the Special Issue Mathematical Inequalities, Special Functions and Symmetry)

Abstract

:
In this paper, we present some mappings defined over 0 , 1 related to the Fejér-type inequalities that have been established for harmonically convex functions. As a consequence, we obtain companions of Fejér-type inequalities for harmonically convex functions by using these mappings. Properties of these mappings are discussed, and consequently, we obtain refinement inequalities of some known results.

1. Introduction

The following double inequality has significant importance in the literature of mathematical inequalities for convex functions and is recognized as Hermite–Hadamard’s inequality (see [1,2]):
Let φ : I R , I R , ν 1 , ν 2 I with ν 1 < ν 2 being a convex function, then
φ ν 1 + ν 2 2 1 ν 2 ν 1 ν 1 ν 2 φ ( σ ) d σ φ ( ν 1 ) + φ ( ν 2 ) 2 ,
the inequality holds in reversed direction if φ is a concave function.
Fejér [3] established the following double inequality as a weighted generalization of (1):
φ ν 1 + ν 2 2 ν 1 ν 2 κ ( σ ) d σ ν 1 ν 2 φ ( σ ) κ ( σ ) d σ φ ( ν 1 ) + φ ( ν 2 ) 2 ν 1 ν 2 κ ( σ ) d σ ,
where φ : I R , I R , ν 1 , ν 2 I with ν 1 < ν 2 being any convex function and κ : ν 1 , ν 2 R being non-negative integrable and symmetric about σ = ν 1 + ν 2 2 .
There are several variants and generalizations of these inequalities, as illustrated in [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31].
The following mappings on 0 , 1 are of interest:
G ( ϑ ) = 1 2 ν 1 ν 2 φ ϑ ν 1 + 1 ϑ ν 1 + ν 2 2 + φ ϑ ν 2 + 1 ϑ ν 1 + ν 2 2 d σ ,
H ( ϑ ) = 1 ν 2 ν 1 ν 1 ν 2 φ ϑ σ + 1 ϑ ν 1 + ν 2 2 d σ ,
L ( ϑ ) = 1 2 ν 2 ν 1 ν 1 ν 2 φ ϑ ν 1 + 1 ϑ σ + φ ϑ ν 2 + 1 ϑ σ d σ ,
I ϑ = 1 2 ν 1 ν 2 φ ϑ ν 1 + σ 2 + 1 ϑ ν 1 + ν 2 2 + φ ϑ ν 2 + σ 2 + 1 ϑ ν 1 + ν 2 2 κ σ d σ
and
Z κ ( ϑ ) = 1 2 ν 1 ν 2 φ ϑ ν 1 + 1 ϑ σ + φ ϑ ν 2 + 1 ϑ σ κ ( σ ) d σ ,
where φ : ν 1 , ν 2 R is a convex function and κ : ν 1 , ν 2 R is non-negative integrable and symmetric about σ = ν 1 + ν 2 2 .
The important results that characterize the properties of the above mappings and inequalities are discussed by a number of mathematicians.
In [4], Dragomir established a result which refines the first inequality of (1). In another paper [9], Dragomir et al. obtained further refinements of (1). In [18], Hwang et al. proved the following useful result in order to establish some results for coordinated convex functions on a rectangle from the plane R .
Lemma 1.
[18] Let φ : ν 1 , ν 2 R be a convex function and let ν 1 y 1 σ 1 σ 2 y 2 ν 2 with σ 1 + σ 2 = y 1 + y 2 . Then,
φ σ 1 + φ σ 2 φ y 1 + φ y 2 .
Yang and Tseng [28] used Lemma 1 to refine the first inequality of (2) and generalized a result proved by Dragomir in [4]. In [24], Tseng et al. established Hermite–Hadamard and Fejér-type inequalities by using the mapping I. Furthermore, Fejér-type inequalities have also been proven by Tseng et al. in [25] by using the mapping I. Hwang et al. [25] obtained some Fejér-type inequalities in connection to the mappings G , H , I, Z κ .
One of the generalizations of the convex functions is considered as a harmonically convex function:
Definition 1.
[32] Define I R \ 0 as an interval of real numbers. A function φ from I to the real numbers is considered to be harmonically convex if
φ σ y ϑ σ + 1 ϑ y ϑ φ y + 1 ϑ φ σ
for all σ , y I and ϑ 0 , 1 . The function φ is defined to be harmonically concave if the inequality in (3) is reversed.
İşcan [32] used harmonically convex functions to develop an inequality of Hermite–Hadamard type.
Theorem 1.
[32] Let φ : I R \ 0 R be a harmonically convex function and ν 1 , ν 2 I with ν 1 < ν 2 . If φ L ν 1 , ν 2 , then the following inequalities hold:
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 ν 2 ν 1 ν 2 ν 1 φ σ σ 2 d σ φ ν 1 + φ ν 2 2 .
Some important facts which relate harmonically convex and convex functions are given in the results below.
Theorem 2.
[10,11] If ν 1 , ν 2 I 0 , , and if we consider the function w : 1 ν 2 , 1 ν 1 R defined by w ϑ = φ 1 ϑ , then φ is harmonically convex on ν 1 , ν 2 if, and only if, w is convex in the usual sense on 1 ν 2 , 1 ν 1 .
Theorem 3.
[10,11] If I 0 , and φ is a convex and non-decreasing function, then φ is HA-convex (harmonically convex), and if φ is HA-convex (harmonically convex) and a non-increasing function, then φ is convex.
Let φ : ν 1 , ν 2 0 , R be a harmonically convex mapping and let S , V : 0 , 1 R be defined by
S ϑ = ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ σ ν 1 + ν 2 d σ
and
V ϑ = ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ 2 ν 2 σ 1 + ϑ σ + 1 ϑ ν 2 + φ 2 ν 1 σ 1 + ϑ σ + 1 ϑ ν 1 d σ .
The author obtained the refinement inequalities for (4) related to the above mappings:
Theorem 4.
[20] Let φ : ν 1 , ν 2 0 , R be a harmonically convex function on ν 1 , ν 2 . Then,
(i) 
S is harmonically convex 0 , 1 and increases monotonically on 0 , 1 .
(ii) 
The following holds:
φ 2 ν 1 ν 2 ν 1 + ν 2 = S 0 S ϑ S 1 = ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 φ σ σ 2 d σ .
Theorem 5.
[20] Let φ : ν 1 , ν 2 0 , R be a harmonically convex function on ν 1 , ν 2 . Then,
(i) 
V is harmonically convex 0 , 1 and increases monotonically on 0 , 1 .
(ii) 
The following holds:
ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 φ σ σ 2 d σ = V 0 V ϑ V 1 = φ ν 1 + φ ν 2 2 .
A harmonically symmetric function is defined in the definition below.
Definition 2.
[22] A function κ : ν 1 , ν 2 R \ 0 R is harmonically symmetric with respect to 2 ν 1 ν 2 ν 1 + ν 2 if
κ σ = κ 1 1 ν 1 + 1 ν 2 1 σ
holds for all σ ν 1 , ν 2 .
Fejér-type inequalities using harmonically convex functions and the notion of harmonically symmetric functions were presented in Chan and Wu [33].
Theorem 6.
[33] Let φ : I R \ 0 R be a harmonically convex function and ν 1 , ν 2 I with ν 1 < ν 2 . If φ L ν 1 , ν 2 and κ : ν 1 , ν 2 R \ 0 R are non-negative, integrable and harmonically symmetric with respect to 2 ν 1 ν 2 ν 1 + ν 2 , then
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 2 ν 1 κ σ σ 2 d σ ν 2 ν 1 φ σ κ σ σ 2 d σ φ ν 1 + φ ν 2 2 ν 2 ν 1 κ σ σ 2 d σ .
Chan and Wu [33] also defined some mappings related to (7) and discussed important properties of these mappings.
Let us now define the following mappings on 0 , 1 related to (7):
G 1 ( ϑ ) = 1 2 φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 + φ 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2 d σ ,
S ( ϑ ) = ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ ν 1 + ν 2 σ d σ ,
S κ ( ϑ ) = ν 1 ν 2 φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ ν 1 + ν 2 σ κ ( σ ) σ 2 d σ ,
I 1 ( ϑ ) = 1 2 ν 1 ν 2 φ 2 ν 1 ν 2 σ ϑ ν 2 ν 1 + σ + 1 ϑ σ ν 1 + ν 2 + φ 2 ν 1 ν 2 σ ϑ ν 1 σ + ν 2 + 1 ϑ σ ν 1 + ν 2 κ ( σ ) σ 2 d σ ,
T ( ϑ ) = ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ ν 2 σ ϑ σ + 1 ϑ ν 2 + φ ν 1 σ ϑ σ + 1 ϑ ν 1 d σ ,
T κ ( ϑ ) = 1 2 ν 1 ν 2 φ ν 2 σ ϑ σ + 1 ϑ ν 2 + φ ν 1 σ ϑ σ + 1 ϑ ν 1 κ ( σ ) σ 2 d σ ,
R 1 ϑ = 1 2 ν 1 ν 2 φ 2 ν 2 σ 2 ϑ σ + 1 ϑ ν 2 + σ + φ 2 ν 1 ν 2 σ 2 ν 1 σ ϑ + 1 ϑ ν 2 ν 1 + σ + φ 2 ν 1 ν 2 σ 2 ν 2 σ ϑ + 1 ϑ ν 1 ν 2 + σ + φ 2 ν 1 σ 2 ϑ σ + 1 ϑ ν 1 + σ κ ( σ ) σ 2 d σ ,
and
R ¯ 1 ϑ = ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 φ 2 ν 2 σ 2 ϑ σ + 1 ϑ ν 2 + σ + φ 2 ν 1 ν 2 σ 2 ν 1 σ ϑ + 1 ϑ ν 2 ν 1 + σ + φ 2 ν 1 ν 2 σ 2 ν 2 σ ϑ + 1 ϑ ν 1 ν 2 + σ + φ 2 ν 1 σ 2 ϑ σ + 1 ϑ ν 1 + σ d σ σ 2 ,
where φ : ν 1 , ν 2 R is a harmonically convex function and κ : ν 1 , ν 2 R is non-negative integrable and symmetric about σ = 2 ν 1 ν 2 ν 1 + ν 2 .
Here, we point out an important lemma to be used in the sequel of the paper.
Lemma 2.
[21] Let φ : ν 1 , ν 2 0 , R be a harmonically convex function and let ν 1 y 1 σ 1 σ 2 y 2 ν 2 with σ 1 σ 2 σ 1 + σ 2 = y 1 y 2 y 1 + y 2 . Then,
φ σ 1 + φ σ 2 φ y 1 + φ y 2 .
We refer to the paper [21] for further important Fejér-type inequalities connected with the mappings G 1 , S , I 1 , S κ , T and T κ .
Inspired by the studies conducted in [4,20,21,24,25,27], we consider the above mappings in connection to (7) and prove new Féjer-type inequalities which are variants of results proven in [25] using harmonically convex functions, Lemma 2 and novel techniques.

2. Main Results

We begin this section with the following result.
Theorem 7.
Let φ, κ, I be defined as above. Then, the following Fejér-type inequalities hold:
(i) 
The inequalities
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ 2 4 ν 1 ν 2 ν 1 + 3 ν 2 2 ν 1 ν 2 ν 1 + ν 2 φ σ κ ν 1 ν 2 σ 4 ν 1 ν 2 ν 1 + 2 ν 2 σ σ 2 d σ + 2 ν 1 ν 2 ν 1 + ν 2 4 ν 1 ν 2 3 ν 1 + ν 2 φ σ κ ν 1 ν 2 σ 2 ν 1 + 3 ν 2 σ 4 ν 1 ν 2 σ 2 d σ 0 1 I 1 ϑ d ϑ 1 2 φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ + 1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 κ σ σ 2 d σ
hold.
(ii) 
If φ is differentiable on ν 1 , ν 2 and κ is bounded on ν 1 , ν 2 , then the inequalities
0 1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 κ σ σ 2 d σ I 1 ϑ 1 ϑ ν 2 ν 1 ν 1 ν 2 φ ν 1 + φ ν 2 2 ν 1 ν 2 φ σ σ 2 d σ κ ,
hold for all ϑ 0 , 1 , where κ = sup σ ν 1 , ν 2 κ σ .
(iii) 
If φ is differentiable on ν 1 , ν 2 , then the inequalities
0 φ ν 1 + φ ν 2 2 ν 1 ν 2 κ σ σ 2 d σ I 1 ϑ ν 2 ν 1 ν 2 2 φ ν 2 ν 1 2 φ ν 1 4 ν 1 ν 2 ν 1 ν 2 κ σ σ 2 d σ
for all ϑ 0 , 1 .
Proof. 
(i)
We can obtain the following identities using integration tools and the postulates of κ :
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ = 2 0 1 2 d ϑ φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ .
By making use of the substitution σ = ν 1 u 2 ν 1 u on the right hand side of (11), we obtain
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ = 2 0 1 2 d ϑ φ 2 ν 1 ν 2 ν 1 + ν 2 × 2 ν 1 2 ν 1 ν 2 ν 1 + ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d σ = 4 φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 2 ν 1 ν 2 ν 1 + ν 2 0 1 2 κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ .
2 2 ν 1 ν 2 ν 1 + ν 2 4 ν 1 ν 2 3 ν 1 + ν 2 φ σ κ ν 1 ν 2 σ 4 ν 1 ν 2 2 ν 1 + ν 2 σ σ 2 d σ + 4 ν 1 ν 2 ν 1 + 3 ν 2 2 ν 1 ν 2 ν 1 + ν 2 φ σ κ ν 1 ν 2 σ 2 ν 1 + 3 ν 2 σ 4 ν 1 ν 2 σ 2 d σ = 2 2 ν 1 ν 2 ν 1 + ν 2 4 ν 1 ν 2 3 ν 1 + ν 2 φ σ + φ 1 1 ν 1 + 1 ν 2 1 σ κ ν 1 ν 2 σ 4 ν 1 ν 2 2 ν 1 + ν 2 σ σ 2 d σ = 2 ν 1 2 ν 1 ν 2 ν 1 + ν 2 0 1 2 φ 4 ν 1 ν 2 σ 2 ν 1 ν 2 + ν 1 + ν 2 σ + φ 4 ν 1 ν 2 σ 3 ν 1 + ν 2 σ 2 ν 1 ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ ,
0 1 I 1 ϑ d ϑ = 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ν 1 σ + ν 2 ϑ + σ ν 1 + ν 2 1 ϑ + φ 2 ν 1 ν 2 σ ν 1 σ + ν 2 1 ϑ + σ ν 1 + ν 2 ϑ κ σ σ 2 d ϑ d σ + 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ν 2 σ + ν 1 ϑ + σ ν 1 + ν 2 1 ϑ + φ 2 ν 1 ν 2 σ ν 2 σ + ν 1 1 ϑ + σ ν 1 + ν 2 ϑ κ σ σ 2 d ϑ d σ = 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ν 2 σ + ν 1 ϑ + σ ν 1 + ν 2 1 ϑ + φ 2 ν 1 ν 2 σ ν 2 σ + ν 1 1 ϑ + σ ν 1 + ν 2 ϑ κ σ σ 2 d ϑ d σ + 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ν 2 + 2 ν 1 σ ν 1 ν 2 ϑ + σ ν 1 + ν 2 1 ϑ + φ 2 ν 1 ν 2 σ ν 1 + 2 ν 2 σ ν 1 ν 2 1 ϑ + σ ν 1 + ν 2 ϑ κ σ σ 2 d ϑ d σ = 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ + 1 2 ν 1 ν 2 0 1 2 φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 + ν 2 σ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 + ν 2 σ ν 1 ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ
and
1 2 φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ + 1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 κ σ σ 2 d σ = 1 2 ν 1 ν 2 0 1 2 2 φ 2 ν 1 ν 2 ν 1 + ν 2 + φ 2 ν 1 σ ν 1 + σ + φ 2 ν 1 ν 2 σ ν 1 + 2 ν 2 σ ν 1 ν 2 κ σ σ 2 d ϑ d σ = ν 1 2 ν 1 ν 2 ν 1 + ν 2 0 1 2 φ σ + φ 2 ν 1 ν 2 ν 1 + ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ + ν 1 2 ν 1 ν 2 ν 1 + ν 2 0 1 2 φ 2 ν 1 ν 2 ν 1 + ν 2 + φ 1 1 ν 1 + 1 ν 2 1 σ κ ν 1 σ 2 ν 1 σ σ 2 d ϑ d σ .
By using Lemma 2, we observe that the following inequality holds for all ϑ 0 , 1 2 and σ ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 :
The inequality
4 φ 2 ν 1 ν 2 ν 1 + ν 2 2 φ 4 ν 1 ν 2 σ 2 ν 1 ν 2 + ν 1 + ν 2 σ + φ 4 ν 1 ν 2 σ 3 ν 1 + ν 2 σ 2 ν 1 ν 2
holds for
σ 1 = σ 2 = 2 ν 1 ν 2 ν 1 + ν 2 , y 1 = 4 ν 1 ν 2 σ 2 ν 1 ν 2 + ν 1 + ν 2 σ and y 2 = 4 ν 1 ν 2 σ 3 ν 1 + ν 2 σ 2 ν 1 ν 2 .
The inequality
2 φ 4 ν 1 ν 2 σ 2 ν 1 ν 2 + ν 1 + ν 2 σ φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 ν 2
holds for
σ 1 = σ 2 = 4 ν 1 ν 2 σ 2 ν 1 ν 2 + ν 1 + ν 2 σ , y 1 = 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 ν 2 and y 2 = 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 ν 2 .
The inequality
2 φ 4 ν 1 ν 2 σ 3 ν 1 + ν 2 σ 2 ν 1 ν 2 φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 + ν 2 σ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 + ν 2 σ ν 1 ν 2
holds for
σ 1 = σ 2 = 4 ν 1 ν 2 σ 3 ν 1 + ν 2 σ 2 ν 1 ν 2 , y 1 = 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 and y 2 = 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 .
The inequality
φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 ν 2 φ σ + φ 1 1 ν 1 + 1 ν 2 1 σ
holds for
σ 1 = 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 ν 2 , σ 2 = 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 ν 2 , y 1 = σ and y 2 = 1 1 ν 1 + 1 ν 2 1 σ .
Finally, the inequality
φ 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 + ν 2 σ ν 1 ν 2 + φ 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 + ν 2 σ ν 1 ν 2 φ 2 ν 1 ν 2 ν 1 + ν 2 + φ 1 1 ν 1 + 1 ν 2 1 σ
holds for
σ 1 = 2 ν 1 ν 2 σ ϑ ν 1 + ν 2 σ + 2 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 , σ 2 = 2 ν 1 ν 2 σ 1 ϑ ν 1 + ν 2 σ + 2 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 , y 1 = 2 ν 1 ν 2 ν 1 + ν 2 and y 2 = 1 1 ν 1 + 1 ν 2 1 σ .
Multiplying the inequalities (16)–(20) by κ ν 1 σ 2 ν 1 σ σ 2 and integrating them over ϑ on 0 , 1 2 , over σ on ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 and using identities (11)–(15), we derive (8).
(ii)
Since φ : ν 1 , ν 2 R is harmonically convex on ν 1 , ν 2 , hence w : 1 ν 2 , 1 ν 1 R defined by w σ = φ 1 σ is convex on 1 ν 2 , 1 ν 1 . Thus, by integration by parts, we obtain that the following identity holds:
1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 σ w 1 ν 1 + 1 ν 2 σ w σ d σ = ν 2 ν 1 2 ν 1 ν 2 w 1 ν 1 + w 1 ν 2 1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 w 1 ν 1 + 1 ν 2 σ + w σ d σ .
The equality (21) is equivalent to the following equality:
ν 1 2 ν 1 ν 2 ν 1 + ν 2 1 σ 2 1 σ ν 1 + ν 2 2 ν 1 ν 2 φ 1 1 ν 1 + 1 ν 2 1 σ 1 ν 1 + 1 ν 2 1 σ 2 σ 2 φ σ d σ = ν 2 ν 1 ν 1 ν 2 φ ν 1 + φ ν 2 2 ν 1 ν 2 φ σ σ 2 d σ .
Under the propositions of κ , we have the following identities using substitution rules for integration:
1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 ν 2 σ σ + ν 2 κ σ σ 2 d σ = 1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 ν 1 ν 2 σ σ ν 1 + 2 ν 2 ν 1 ν 2 κ σ σ 2 d σ = ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ σ + φ 1 1 ν 1 + 1 ν 2 1 σ κ ν 1 σ 2 ν 1 σ σ 2 d σ
and
I 1 ϑ = 1 2 ν 1 ν 2 φ 2 ν 1 ν 2 σ ϑ ν 1 σ + ν 2 + 1 ϑ σ ν 1 + ν 2 + φ 2 ν 1 ν 2 σ ϑ σ ν 1 + 2 ν 2 ν 1 ν 2 + 1 ϑ σ ν 1 + ν 2 κ σ σ 2 d σ = 1 2 ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ 2 ν 1 ν 2 σ 2 ϑ ν 1 ν 2 + 1 ϑ σ ν 1 + ν 2 + φ 2 ν 1 ν 2 σ 2 ϑ σ ν 1 + ν 2 σ ν 1 ν 2 + 1 ϑ σ ν 1 + ν 2 κ ν 1 σ 2 ν 1 σ σ 2 d σ
for all ϑ 0 , 1 .
Using the convexity of w and the hypothesis of κ , the inequality holds for all ϑ 0 , 1 and σ 1 ν 2 , ν 1 + ν 2 2 ν 1 ν 2 :
w σ w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 + w 1 ν 1 + 1 ν 2 σ w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 1 ϑ σ ν 1 + ν 2 2 ν 1 ν 2 w σ κ 1 2 σ 1 ν 2 + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 σ w 1 ν 1 + 1 ν 2 σ κ 1 2 σ 1 ν 2 = 1 ϑ σ ν 1 + ν 2 2 ν 1 ν 2 w σ w 1 ν 1 + 1 ν 2 σ κ 1 2 σ 1 ν 2 .
The inequality (25) is equivalent to
φ σ φ 2 ν 1 ν 2 σ 2 ϑ ν 1 ν 2 + 1 ϑ σ ν 1 + ν 2 κ ν 1 σ 2 ν 1 σ σ 2 + φ 1 1 ν 1 + 1 ν 2 1 σ φ 1 ϑ 1 ν 1 + 1 ν 2 1 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ ν 1 σ 2 ν 1 σ σ 2 1 ϑ 1 σ 2 1 σ ν 1 + ν 2 2 ν 1 ν 2 φ 1 1 ν 1 + 1 ν 2 1 σ 1 ν 1 + 1 ν 2 1 σ 2 σ 2 φ σ κ .
Integrating the above inequalities over σ on 2 ν 1 ν 2 ν 1 + ν 2 , ν 2 and using (21)–(24) and (26).
(iii)
Using the convexity of w, we have
w 1 ν 2 w ν 1 + ν 2 2 ν 1 ν 2 2 1 2 ν 2 ν 1 2 ν 1 ν 2 w 1 ν 2
and
w 1 ν 1 w ν 1 + ν 2 2 ν 1 ν 2 2 1 2 ν 2 ν 1 2 ν 1 ν 2 w 1 ν 1 .
The above inequalities are equivalent to the following inequalities
φ ν 2 φ 2 ν 1 ν 2 ν 1 + ν 2 2 1 2 ν 2 ν 1 2 ν 1 ν 2 ν 2 2 φ ν 2
and
φ ν 1 φ 2 ν 1 ν 2 ν 1 + ν 2 2 1 2 ν 2 ν 1 2 ν 1 ν 2 ν 1 2 φ ν 1 .
Adding (27) and (28)
φ ν 2 + φ ν 1 2 φ 2 ν 1 ν 2 ν 1 + ν 2 1 2 ν 2 ν 1 2 ν 1 ν 2 ν 2 2 φ ν 2 ν 1 2 φ ν 1 .
Hence, we obtain from (29) that
φ ν 2 + φ ν 1 2 ν 1 ν 2 κ σ σ 2 d σ φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ ν 2 ν 1 ν 2 2 φ ν 2 ν 1 2 φ ν 1 4 ν 1 ν 2 ν 1 ν 2 κ σ σ 2 d σ .
The inequality (10) follows from (19), (20) and (30). □
Corollary 1.
Let κ σ = ν 1 ν 2 ν 2 ν 1 , σ ν 1 , ν 2 in Theorem 7. Then, I 1 ϑ = V ϑ , ϑ 0 , 1 , and therefore we observe that
(i) 
The inequalities
φ 2 ν 1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 ν 2 ν 1 4 ν 1 ν 2 ν 1 + 3 ν 2 2 ν 1 ν 2 ν 1 + ν 2 φ σ σ 2 d σ + 2 ν 1 ν 2 ν 1 + ν 2 4 ν 1 ν 2 3 ν 1 + ν 2 φ σ σ 2 d σ 0 1 V ϑ d ϑ 1 2 φ 2 ν 1 ν 2 ν 1 + ν 2 + ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 d σ
hold.
(ii) 
If φ is differentiable on ν 1 , ν 2 and κ is bounded on ν 1 , ν 2 , then the inequalities
0 ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 1 σ 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 d σ V ϑ 1 ϑ φ ν 1 + φ ν 2 2 ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 φ σ σ 2 d σ ,
hold for all ϑ 0 , 1 .
(iii) 
If φ is differentiable on ν 1 , ν 2 , then, for all ϑ 0 , 1 , we have the inequality
0 φ ν 1 + φ ν 2 2 V ϑ ν 2 ν 1 ν 2 2 φ ν 2 ν 1 2 φ ν 1 4 ν 1 ν 2 .
In the following theorems, we point out some inequalities for the mappings G 1 , S , I 1 , S κ as considered above:
Theorem 8.
Let φ, κ, G 1 , I 1 be defined as above. Then:
(i) 
The inequality
I 1 ϑ G 1 ϑ ν 1 ν 2 κ σ σ 2 d σ
holds for all ϑ 0 , 1 .
(ii) 
If φ is differentiable on ν 1 , ν 2 and κ is bounded on ν 1 , ν 2 , then the inequalities
0 I 1 ϑ φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ ν 2 ν 1 ν 1 ν 2 G 1 ϑ S ϑ κ ,
hold for all ϑ 0 , 1 , where κ = sup σ ν 1 , ν 2 κ σ .
Proof. 
(i)
Using integration techniques and the hypothesis of κ , we find that the following identity holds on 0 , 1 :
G 1 ϑ ν 1 ν 2 κ σ σ 2 d σ = ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 + φ 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2 κ ν 2 σ 2 ν 2 σ σ 2 d σ .
By Lemma 2, the following inequality holds for all ϑ 0 , 1 and σ ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 :
φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ σ ν 1 + ν 2 + φ 2 ν 1 ν 2 σ 2 ν 1 σ + ν 2 σ ν 2 ϑ + 1 ϑ σ ν 1 + ν 2 φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 + φ 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2
holds for
σ 1 = 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ σ ν 1 + ν 2 , σ 2 = 2 ν 1 ν 2 σ 2 ν 1 σ + ν 2 σ ν 2 ϑ + 1 ϑ σ ν 1 + ν 2 , y 1 = 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 and y 2 = 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2 .
Multiplying the inequality (37) by κ ν 2 σ 2 ν 2 σ σ 2 , integrating both sides over σ on ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 and using identities (24) and (36), we derive (34).
(ii)
Since φ : ν 1 , ν 2 R is harmonically convex on ν 1 , ν 2 , hence w : 1 ν 2 , 1 ν 1 R defined by w σ = φ 1 σ is convex on 1 ν 2 , 1 ν 1 . Thus, by integration by parts, we obtain that the following identity holds:
ϑ 1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 σ ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 + ν 1 + ν 2 2 ν 1 ν 2 σ w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 d σ = ϑ 1 ν 2 1 ν 1 σ ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 d σ = ν 2 ν 1 2 ν 1 ν 2 φ 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2 + φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 ν 1 ν 2 1 σ 2 φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 ϑ + 1 ϑ ν 1 + ν 2 d σ = ν 2 ν 1 ν 1 ν 2 G 1 ϑ S ϑ .
Using the convexity of w and the hypothesis of κ , the inequality holds for all ϑ 0 , 1 and σ 1 ν 2 , ν 1 + ν 2 2 ν 1 ν 2 :
w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 w ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 + w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 w ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 ϑ σ ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 + ϑ ν 1 + ν 2 2 ν 1 ν 2 σ w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 = ϑ ν 1 + ν 2 2 ν 1 ν 2 σ w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 ϑ ν 1 + ν 2 2 ν 1 ν 2 σ × w ϑ 1 ν 1 + 1 ν 2 σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ .
Integrating (39) over σ on 1 ν 2 , ν 1 + ν 2 2 ν 1 ν 2 and using (38), we obtain
1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 + w ϑ σ + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 d σ 2 w ν 1 + ν 2 2 ν 1 ν 2 1 ν 2 ν 1 + ν 2 2 ν 1 ν 2 κ 1 2 σ 1 ν 2 d σ ν 2 ν 1 ν 1 ν 2 G 1 ϑ S ϑ .
The last inequality is equivalent to
I 1 ϑ φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ ν 2 ν 1 ν 1 ν 2 G 1 ϑ S ϑ .
Since φ : ν 1 , ν 2 R is harmonically convex on ν 1 , ν 2 , hence w : 1 ν 2 , 1 ν 1 R defined by w σ = φ 1 σ is convex on 1 ν 2 , 1 ν 1 . We can prove that the mapping I ¯ 1 : 0 , 1 R defined by
I ¯ 1 ( ϑ ) = 1 2 1 ν 2 1 ν 1 w ϑ σ + 1 ν 1 2 + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 + w ϑ σ + 1 ν 2 2 + 1 ϑ ν 1 + ν 2 2 ν 1 ν 2 κ 1 σ d σ
is convex and monotonically increasing on 0 , 1 . Thus, the mapping I 1 is harmonically convex on 0 , 1 and monotonically increasing on 0 , 1 . Consequently, we have
φ 2 ν 1 ν 2 ν 1 + ν 2 ν 1 ν 2 κ σ σ 2 d σ = I 1 0 I 1 ϑ I 1 1 = 1 2 ν 1 ν 2 φ 2 ν 1 σ ν 1 + σ + φ 2 σ ν 2 σ + ν 2 κ ( σ ) σ 2 d σ .
The inequality (35) follows from the inequalities (41) and (43). □
Corollary 2.
Let κ σ = ν 1 ν 2 ν 2 ν 1 , σ ν 1 , ν 2 in Theorem 8. Then, for all ϑ 0 , 1
I 1 ϑ = H 1 ϑ = ν 1 ν 2 2 ν 2 ν 1 ν 1 ν 2 φ 2 ν 1 ν 2 σ ϑ ν 2 ν 1 + σ + 1 ϑ σ ν 1 + ν 2 + φ 2 ν 1 ν 2 σ ϑ ν 1 σ + ν 2 + 1 ϑ σ ν 1 + ν 2 d σ σ 2
and the inequalities (34) and (35) reduce to the given inequalities:
(i) 
The inequality
H 1 ϑ G 1 ϑ
holds for all ϑ 0 , 1 .
(ii) 
If φ is differentiable on ν 1 , ν 2 and κ is bounded on ν 1 , ν 2 , then, the inequalities
0 H 1 ϑ φ 2 ν 1 ν 2 ν 1 + ν 2 G 1 ϑ S ϑ
hold for all ϑ 0 , 1 .
Theorem 9.
Let φ, κ, G 1 , I 1 , R 1 be defined as above. Then
(i) 
R 1 is convex on 0 , 1 .
(ii) 
The inequalities
G 1 ϑ ν 1 ν 2 κ σ σ 2 d σ R 1 ϑ 1 ϑ · 1 2 ν 1 ν 2 φ 2 σ ν 2 σ + ν 2 + φ 2 ν 1 σ ν 1 + σ κ σ σ 2 d σ + ϑ · φ ν 1 + φ ν 2 2 ν 1 ν 2 κ σ σ 2 d σ φ ν 1 + φ ν 2 2 ν 1 ν 2 κ σ σ 2 d σ ,
I 1 1 ϑ R 1 ϑ
and
I 1 ϑ + I 1 1 ϑ 2 R 1 ϑ
hold for all ϑ 0 , 1 .
(iii) 
The identity
sup ϑ 0 , 1 R 1 ϑ = φ ν 1 + φ ν 2 2 ν 1 ν 2 κ σ σ 2 d σ
holds.
Proof. 
(i)
Since φ : ν 1 , ν 2 R is harmonically convex on ν 1 , ν 2 , hence w : 1 ν 2 , 1 ν 1 R defined by w σ = φ 1 σ is convex on 1 ν 2 , 1 ν 1 . This shows that the mapping R 1 : 0 , 1 R defined by
R 1 ϑ = 1 2 1 ν 2 1 ν 1 w ϑ 1 ν 2 + 1 ϑ σ + 1 ν 2 2 + w ϑ 1 ν 2 + 1 ϑ 1 ν 1 + σ 2 + w ϑ 1 ν 1 + 1 ϑ σ + 1 ν 2 2 + w ϑ 1 ν 1 + 1 ϑ σ + 1 ν 1 2 κ 1 σ d σ ,
is convex on 0 , 1 .
This conclude that the mapping R 1 : 0 , 1 R defined by
R 1 ϑ = 1 2 ν 1 ν 2 φ 2 ν 2 σ 2 ϑ σ + 1 ϑ ν 2 + σ + φ 2 ν 1 ν 2 σ 2 ν 1 σ ϑ + 1 ϑ ν 2 ν 1 + σ + φ 2 ν 1 ν 2 σ 2 ν 2 σ ϑ + 1 ϑ ν 1 ν 2 + σ + φ 2 ν 1 σ 2 ϑ σ + 1 ϑ ν 1 + σ κ ( σ ) σ 2 d σ ,
is harmonically convex on 0 , 1 .
(ii)
We observe that the following identity holds for all ϑ 0 , 1 :
R 1 ϑ = 1 2 ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ ν 2 σ ϑ σ + 1 ϑ ν 2 + φ ν 1 ν 2 σ ν 1 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 + φ ν 1 σ ϑ σ + 1 ϑ ν 1 + φ ν 1 ν 2 σ ν 2 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 κ ( ν 1 σ 2 ν 1 σ ) σ 2 d σ .
By Lemma 2, the following inequalities hold for all ϑ 0 , 1 and σ ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 :
The inequality
2 φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 φ ν 1 ν 2 σ ν 1 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 + φ ν 1 σ ϑ σ + 1 ϑ ν 1
holds for
σ 1 = σ 2 = 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 , y 1 = ν 1 σ ϑ σ + 1 ϑ ν 1 and y 2 = ν 1 ν 2 σ ν 1 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2
in Lemma 2.
The inequality
2 φ 2 ν 1 ν 2 2 ν 1 ϑ + 1 ϑ ν 1 + ν 2 φ ν 1 ν 2 σ ν 1 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 + φ ν 1 σ ϑ σ + 1 ϑ ν 1
holds for
σ 1 = σ 2 = 2 ν 1 ν 2 2 ν 2 ϑ + 1 ϑ ν 1 + ν 2 , y 1 = ν 2 σ ϑ σ + 1 ϑ ν 2 and y 2 = ν 1 ν 2 σ ν 1 ν 2 ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2
in Lemma 2.
Multiplying the inequalities (53), (54) by κ ( ν 2 σ 2 ν 2 σ ) σ 2 , adding the resulting inequalities, integrating the resulting inequality over σ on ν 1 , 2 ν 1 ν 2 ν 1 + ν 2 and using identities (36) and (52), we derive the first inequality of (2). Using the harmonic convexity of φ and the inequality (52), the last part of (2) holds.
Next, by the harmonic convexity of φ and the identity (52), we obtain
I 1 1 ϑ = ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ 2 ν 1 ν 2 σ 2 ν 1 ν 2 1 ϑ + ϑ ν 1 + ν 2 σ + φ 2 ν 1 ν 2 σ 2 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 + ϑ σ ν 1 + ν 2 κ ν 2 σ 2 ν 2 σ σ 2 d σ = ν 1 2 ν 1 ν 2 ν 1 + ν 2 φ 1 1 2 ν 1 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 ν 1 ν 2 σ + 1 2 ν 2 σ ϑ + 1 ϑ ν 1 σ + ν 2 σ ν 1 ν 2 ν 1 ν 2 σ + φ 1 1 2 ϑ σ + 1 ϑ ν 2 ν 2 σ + 1 2 ϑ σ + 1 ϑ ν 1 ν 1 σ κ ν 2 σ 2 ν 2 σ σ 2 d σ R 1 ϑ .
Thus, the inequality (47) is proved. From (34), (2) and (55), we obtain (48).
(iii)
The identity (49) holds by using (2).
Corollary 3.
Let κ σ = ν 1 ν 2 ν 2 ν 1 , σ ν 1 , ν 2 in Theorem 9. Then, for all ϑ 0 , 1
(i) 
R ¯ 1 is harmonically convex on 0 , 1 .
(ii) 
The inequalities
G 1 ϑ R ¯ 1 ϑ 1 ϑ · 1 2 ν 1 ν 2 ν 2 ν 1 ν 1 ν 2 φ 2 σ ν 2 σ + ν 2 + φ 2 ν 1 σ ν 1 + σ d σ σ 2 + ϑ · φ ν 1 + φ ν 2 2 φ ν 1 + φ ν 2 2 ,
H 1 1 ϑ R ¯ 1 ϑ
and
H 1 ϑ + H 1 1 ϑ 2 R ¯ 1 ϑ
hold for all ϑ 0 , 1 .
(iii) 
The identity
sup ϑ 0 , 1 R ¯ 1 ϑ = φ ν 1 + φ ν 2 2
holds.

3. Conclusions

Mathematical inequalities utilizing convex functions are a relatively new topic. New conclusions are being added to the theory of inequalities as scholars endeavor to generalize convex functions. We employed harmonically convex functions to generalize convex function results. In this work, we defined new mappings over [ 0 , 1 ] . We examined intriguing aspects of these mappings and refined Hermite–Hadamard and Fejér-type inequalities for harmonically convex functions. We hope the outcomes of this publication will inspire mathematicians and young researchers to enter this subject.

Author Contributions

Conceptualization, M.A.L.; methodology, M.A.L.; validation, M.A.L., formal analysis, M.A.L.; investigation, M.A.L.; writing—original draft preparation, M.A.L.; writing—review and editing, M.A.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Deanship of Scientific Research, King Faisal University under the Ambitious Researcher Track (Research Project Number GRANT694).

Data Availability Statement

Not applicable.

Acknowledgments

The author is very thankful to all the anonymous referees for their very useful and constructive comments in order to present the paper in the present form.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une function considérée par Riemann. J. Math. Pures Appl. 1983, 58, 171–215. [Google Scholar]
  2. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82. [Google Scholar]
  3. Fejér, L. Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
  4. Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef] [Green Version]
  5. Dragomir, S.S. A refinement of Hadamard’s inequality for isotonic linear functionals. Tamkang. J. Math. 1993, 24, 101–106. [Google Scholar] [CrossRef]
  6. Dragomir, S.S. On the Hadamard’s inequality for convex on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
  7. Dragomir, S.S. Further properties of some mapping associated with Hermite-Hadamard inequalities. Tamkang. J. Math. 2003, 34, 45–57. [Google Scholar] [CrossRef]
  8. Dragomir, S.S.; Cho, Y.J.; Kim, S.S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 2000, 245, 489–501. [Google Scholar] [CrossRef] [Green Version]
  9. Dragomir, S.S.; Milŏsević, D.S.; Sándor, J. On some refinements of Hadamard’s inequalities and applications. Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 1993, 4, 3–10. [Google Scholar]
  10. Dragomir, S.S. Inequalities of Jensen type for HA-convex functions. Analele Univers. Oradea Fasc. Mat. 2000, Tom XXVII, 103–124. [Google Scholar]
  11. Dragomir, S.S. Inequalities of Hermite-Hadamard type for HA-convex functions. Moroc. J. Pure Appl. Anal. 2017, 3, 83–101. [Google Scholar] [CrossRef] [Green Version]
  12. Dragomir, S.S. On Hadamard’s inequality for convex functions. Mat. Balk. 1992, 6, 215–222. [Google Scholar] [CrossRef] [Green Version]
  13. Dragomir, S.S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Ineq. Appl. 2000, 3, 177–187. [Google Scholar] [CrossRef] [Green Version]
  14. Dragomir, S.S. On Hadamard’s inequality on a disk. J. Ineq. Pure Appl. Maht. 2000, 1, 2. [Google Scholar]
  15. Dragomir, S.S. On some integral inequalities for convex functions. Zb.-Rad. 1996, 18, 21–25. [Google Scholar]
  16. Dragomir, S.S.; Agarwal, R.P. Two new mappings associated with Hadamard’s inequalities for convex functions. Appl. Math. Lett. 1998, 11, 33–38. [Google Scholar] [CrossRef] [Green Version]
  17. Ho, M.-I. Fejer inequalities for Wright-convex functions. JIPAM J. Inequal. Pure Appl. Math. 2007, 8, 9. [Google Scholar]
  18. Hwang, D.Y.; Tseng, K.-L.; Yang, G.S. Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwan. J. Math. 2007, 11, 63–73. [Google Scholar] [CrossRef]
  19. Lee, K.C.; Tseng, K.-L. On a weighted generalization of Hadamard’s inequality for Gconvex functions. Tamsui-Oxf. J. Math. Sci. 2000, 16, 91–104. [Google Scholar]
  20. Latif, M.A. Mappings related to Hermite-Hadamard type inequalities for harmonicallyally convex functions. Punjab Univ. J. Math, accepted.
  21. Latif, M.A. Fejér type inequalities for harmonicallyally convex functions. AIMS Math. 2022, 7, 15234–15257. [Google Scholar] [CrossRef]
  22. Latif, M.A.; Dragomir, S.S.; Momoniat, E. Fejér type inequalities for harmonicallyally-convex functions with applications. J. Appl. Anal. Comput. 2017, 7, 795–813. [Google Scholar] [CrossRef]
  23. Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. On some new inequalities of Hermite-Hadamard- Fejér type involving convex functions. Demonstr. Math. 2007, 41, 51–64. [Google Scholar] [CrossRef] [Green Version]
  24. Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Fejér-Type Inequalities (I). J. Inequal. Appl. 2010, 2010, 531976. [Google Scholar] [CrossRef] [Green Version]
  25. Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Some companions of Fejér’s inequality for convex functions. RACSAM 2015, 109, 645–656. [Google Scholar] [CrossRef] [Green Version]
  26. Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Fejér-type Inequalities (II). Math. Slovaca 2017, 67, 109–120. [Google Scholar] [CrossRef]
  27. Yang, G.S.; Hong, M.C. A note on Hadamard’s inequality. Tamkang. J. Math. 1997, 28, 33–37. [Google Scholar] [CrossRef]
  28. Yang, G.S.; Tseng, K.-L. On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 1999, 239, 180–187. [Google Scholar]
  29. Yang, G.S.; Tseng, K.-L. Inequalities of Hadamard’s type for Lipschitzian mappings. J. Math. Anal. Appl. 2001, 260, 230–238. [Google Scholar]
  30. Yang, G.S.; Tseng, K.-L. On certain multiple integral inequalities related to Hermite-Hadamard inequalities. Utilitas Math. 2002, 62, 131–142. [Google Scholar]
  31. Yang, G.S.; Tseng, K.-L. Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions. Taiwanese J. Math. 2003, 7, 433–440. [Google Scholar]
  32. İşcan, İ. Hermite-Hadamard type inequalities for harmonicallyally convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar]
  33. Chen, F.; Wu, S. Fejér and Hermite-Hadamard type inequalities for harmonicallyally convex functions. J. Appl. Math. 2014, 2014, 386806. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Latif, M.A. Some Companions of Fejér-Type Inequalities for Harmonically Convex Functions. Symmetry 2022, 14, 2268. https://doi.org/10.3390/sym14112268

AMA Style

Latif MA. Some Companions of Fejér-Type Inequalities for Harmonically Convex Functions. Symmetry. 2022; 14(11):2268. https://doi.org/10.3390/sym14112268

Chicago/Turabian Style

Latif, Muhammad Amer. 2022. "Some Companions of Fejér-Type Inequalities for Harmonically Convex Functions" Symmetry 14, no. 11: 2268. https://doi.org/10.3390/sym14112268

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop