Some Rational Approximations and Bounds for Bateman’s G-Function
Abstract
:1. Introduction
2. Some Padé Approximants of Bateman’s G-Function
3. Some Rational Bounds of Bateman’s G-Function
4. A Completely Monotonic Function Involving
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; California Institute of Technology-Bateman Manuscript Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1981; Volume I–III. [Google Scholar]
- Andrews, G.E.; Askey, R.A.; Roy, R. Special Functions; Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hegazi, A.; Mahmoud, M.; Talat, A.; Moustafa, H. Some best approximation formulas and inequalities for the Bateman’s G-function. J. Comput. Anal. Appl. 2019, 27, 118–135. [Google Scholar]
- Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar] [CrossRef]
- Mahmoud, M.; Almuashi, H. On some inequalities of the Bateman’s G-function. J. Comput. Anal. Appl. 2017, 22, 672–683. [Google Scholar]
- Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G-function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
- Mahmoud, M.; Almuashi, H. Generalized Bateman’s G-function and its bounds. J. Comput. Anal. Appl. 2018, 24, 23–40. [Google Scholar]
- Mahmoud, M.; Talat, A.; Moustafa, H.; Agarwal, R.P. Completely monotonic functions involving Bateman’s G-function. J. Comput. Anal. Appl. 2021, 29, 970–986. [Google Scholar]
- Mortici, C. A sharp inequality involving the psi function. Acta Univ. Apulensis 2010, 22, 41–45. [Google Scholar]
- Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2004, 74, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Alzer, H.; Berg, C. Some classes of completely monotonic functions. Ann. Acad. Sci. Fenn. 2002, 27, 445–460. [Google Scholar] [CrossRef]
- Haeringen, H.V. Completely monotonic and related functions. J. Math. Anal. Appl. 1996, 204, 389–408. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F.; Ismail, M.E.H.; Batir, N.; Guo, S. A necessary and sufficient condition for sequences to be minimal completely monotonic. Adv. Differ. Equ. 2020, 2020, 665. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Baker, G.A., Jr.; Graves–Morris, P.R. Padé Approximants, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Brezinski, C. Computational Aspects of Linear Control; Kluwer: Dordrecht, The Netherland, 2002. [Google Scholar]
- Brezinski, C.; Redivo-Zaglia, M. New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 2015, 284, 69–77. [Google Scholar] [CrossRef]
- Qi, F.; Guo, S.-L.; Guo, B.-N. Completely monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef] [Green Version]
- Apostol, T.M. Calculus, Volume I, One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1967. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahfaf, O.; Mahmoud, M.; Talat, A. Some Rational Approximations and Bounds for Bateman’s G-Function. Symmetry 2022, 14, 929. https://doi.org/10.3390/sym14050929
Ahfaf O, Mahmoud M, Talat A. Some Rational Approximations and Bounds for Bateman’s G-Function. Symmetry. 2022; 14(5):929. https://doi.org/10.3390/sym14050929
Chicago/Turabian StyleAhfaf, Omelsaad, Mansour Mahmoud, and Ahmed Talat. 2022. "Some Rational Approximations and Bounds for Bateman’s G-Function" Symmetry 14, no. 5: 929. https://doi.org/10.3390/sym14050929
APA StyleAhfaf, O., Mahmoud, M., & Talat, A. (2022). Some Rational Approximations and Bounds for Bateman’s G-Function. Symmetry, 14(5), 929. https://doi.org/10.3390/sym14050929