# Antimagic Labeling for Product of Regular Graphs

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Main Results

**Lemma**

**1.**

**Proof.**

**Observation 1.**

**Theorem**

**2.**

**Proof.**

- (i)
- x in ${H}_{i}$ and y in ${H}_{j}$ for $i,j=1,2,\cdots ,n$ and $x\ne {u}_{p}^{i}$ & $y\ne {u}_{p}^{j}$.
- (ii)
- x in G and y in ${H}_{j}$ when $x\ne {u}_{p}^{j}$, $j=1,2,\cdots n.$
- (iii)
- x and y are the vertices of G.

**Theorem**

**3.**

**Proof.**

- (i)
- x in ${H}_{i}$ and y in ${H}_{j}$ for $i,j=1,2,\cdots ,n$.
- (ii)
- x in G and y in ${H}_{j}$ for $j=1,2,\cdots ,n$.
- (iii)
- x and y are the vertices of G.

## 3. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hartsfield, N.; Ringel, G. Pearls in Graph Theory; Academic Press, Inc.: Boston, MA, USA, 1990; pp. 108–109. [Google Scholar]
- Slamin, S.; Adiwijaya, N.O.; Hasan, M.A.; Dafik, D.; Wijaya, K. Local Super Antimagic Total Labeling for Vertex Coloring of Graphs. Symmetry
**2020**, 12, 1843. [Google Scholar] [CrossRef] - Bača, M.; Semaničová-Feňovčíková, A.; Wang, T.-M. Local Antimagic Chromatic Number for Copies of Graphs. Mathematics
**2021**, 9, 1230. [Google Scholar] [CrossRef] - Yang, X.; Bian, H.; Yu, H.; Liu, D. The Local Antimagic Chromatic Numbers of Some Join Graphs. Math. Comput. Appl.
**2021**, 26, 80. [Google Scholar] [CrossRef] - Alon, N.; Kaplan, G.; Lev, A.; Roditty, Y.; Yuster, R. Dense graphs are antimagic. J. Graph Theory
**2004**, 47, 297–309. [Google Scholar] [CrossRef][Green Version] - Yilma, Z.B. Antimagic Properties of Graphs with Large Maximum Degree. J. Graph Theory
**2013**, 72, 367–373. [Google Scholar] [CrossRef] - Barrus, M.D. Antimagic labeling and canonical decomposition of graphs. Inf. Process. Lett.
**2010**, 110, 261–263. [Google Scholar] [CrossRef] - Cheng, Y. Lattice grids and prims are antimagic. Theor. Comput. Sci.
**2007**, 374, 66–73. [Google Scholar] [CrossRef][Green Version] - Cranston, D.W. Regular bipartite graphs are antimagic. J. Graph Theory
**2009**, 60, 173–182. [Google Scholar] [CrossRef] - Liang, Y.C.; Wong, T.L.; Zhu, X. Antimagic labeling of trees. Discret. Math.
**2014**, 331, 9–14. [Google Scholar] [CrossRef] - Liang, Y.C.; Zhu, X. Antimagic labeling of cubic graphs. J. Graph Theory
**2014**, 75, 31–36. [Google Scholar] [CrossRef] - Matamala, M.; Zamora, J. Weighted antimagic labeling. Discret. Appl. Math.
**2018**, 245, 194–201. [Google Scholar] [CrossRef] - Shang, J.L. Spiders are antimagic. Ars Comb.
**2015**, 118, 367–372. [Google Scholar] - Slíva, R. Antimagic labeling graphs with a regular dominating subgraph. Inf. Process. Lett.
**2012**, 112, 844–847. [Google Scholar] [CrossRef] - Wang, T.M. Toroidal grids are anti-magic. In Proceedings of the International Computing and Combinatorics Conference; Springer: Berlin/Heidelberg, Germany, 2005; pp. 671–679. [Google Scholar]
- Cranston, D.W.; Liang, Y.C.; Zhu, X. Regular graphs of odd degree are antimagic. J. Graph Theory
**2015**, 80, 28–33. [Google Scholar] [CrossRef][Green Version] - Chang, F.; Liang, Y.C.; Pan, Z.; Zhu, X. Antimagic labeling of regular graphs. J. Graph Theory
**2016**, 82, 339–349. [Google Scholar] [CrossRef][Green Version] - Bèrczi, K.; Bernáth, A.; Vizer, M. Regular graphs are antimagic. Electron. J. Comb.
**2015**, 22, 1–14. [Google Scholar] [CrossRef] - Liang, Y.C.; Zhu, X. Anti-magic labelling of cartesian product of graphs. Theor. Comput. Sci.
**2013**, 477, 1–5. [Google Scholar] [CrossRef] - Cheng, Y. A new class of antimagic cartesian product graphs. Discret. Math.
**2008**, 308, 6441–6448. [Google Scholar] [CrossRef][Green Version] - Wang, T.M.; Hsiao, C.C. On anti-magic labeling for graph products. Discret. Math.
**2008**, 308, 3624–3633. [Google Scholar] [CrossRef][Green Version] - Phanalasy, O.; Miller, M.; Iliopoulos, C.S.; Pissis, S.P.; Vaezpour, E. Construction of antimagic labeling for the cartesian product of regular graphs. Math. Comput. Sci.
**2011**, 5, 81–87. [Google Scholar] [CrossRef] - Daykin, J.W.; Iliopoulos, C.S.; Miller, M.; Phanalasy, O. Antimagicness of Generalized Corona and Snowflake graphs. Math. Comput. Sci.
**2015**, 9, 105–111. [Google Scholar] [CrossRef] - Wenhui, M.; Guanghua, D.; Yingyu, L.; Wang, N. Lexicographic product graphs P
_{m}[P_{n}] are antimagic. AKCE Int. J. Graphs Comb.**2018**, 15, 271–283. [Google Scholar] - Yingyu, L.; Guanghua, D.; Wenhui, M.; Wang, N. Antimagic labeling of the lexicographic product graph K
_{m,m}[P_{k}]. Math. Comput. Sci.**2018**, 12, 77–90. [Google Scholar] - Yingyu, L.; Guanghua, D.; Wang, N. Antimagicness of Lexicographic product graph G[P
_{n}]. Acta Math. Appl. Sin. Engl. Ser.**2020**, 36, 603–619. [Google Scholar] - Wang, T.; Liu, M.J.; Li, D.M. A Class of Antimagic Join Graphs. Acta Math. Sin. Engl. Ser.
**2013**, 29, 1019–1026. [Google Scholar] [CrossRef] - Bača, M.; Phanalasy, O.; Ryan, J.; Semaničová-Feňovčíková, A. Antimagic Labelings of Join Graphs. Math. Comput. Sci.
**2015**, 9, 139–143. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Latchoumanane, V.; Varadhan, M. Antimagic Labeling for Product of Regular Graphs. *Symmetry* **2022**, *14*, 1235.
https://doi.org/10.3390/sym14061235

**AMA Style**

Latchoumanane V, Varadhan M. Antimagic Labeling for Product of Regular Graphs. *Symmetry*. 2022; 14(6):1235.
https://doi.org/10.3390/sym14061235

**Chicago/Turabian Style**

Latchoumanane, Vinothkumar, and Murugan Varadhan. 2022. "Antimagic Labeling for Product of Regular Graphs" *Symmetry* 14, no. 6: 1235.
https://doi.org/10.3390/sym14061235