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Received: 14 May 2022

Accepted: 1 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Antimagic Labeling for Product of Regular Graphs
Vinothkumar Latchoumanane and Murugan Varadhan *

School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India; noblevino01@gmail.com or
vinothkumar.l2019@vitstudent.ac.in.
* Correspondence: murugan.v@vit.ac.in

Abstract: An antimagic labeling of a graph G = (V, E) is a bijection from the set of edges of G to
{1, 2, · · · , |E(G)|} and such that any two vertices of G have distinct vertex sums where the vertex
sum of a vertex v in V(G) is nothing but the sum of all the incident edge labeling of G. In this paper,
we discussed the antimagicness of rooted product and corona product of graphs. We proved that
if we let G be a connected t-regular graph and H be a connected k-regular graph, then the rooted
product of graph G and H admits antimagic labeling if t ≥ k. Moreover, we proved that if we let G
be a connected t-regular graph and H be a connected k-regular graph, then the corona product of
graph G and H admits antimagic labeling for all t, k ≥ 2.

Keywords: graph labeling; antimagic labeling; product graphs; rooted product; corona product;
regular graph

1. Introduction

Graphs that are considered in this paper are finite, undirected, connected, and simple.
The concept of antimagic labeling of a graph was introduced by Hartsfield and Ringel [1].

An antimagic labeling of a graph G with m edges and n vertices is a one-to-one
correspondence f between the edge set of G to the label set {1, 2, · · · , m} such that φ f (u) 6=
φ f (v), for any two distinct vertices of u, v in V(G), where φ f (v) is defined as the sum of
the labels of the edges that are incident to a vertex v in G. A graph that has at least one
antimagic labeling is called an antimagic graph.

It is clear that K2 does not have any antimagic labeling. Except for K2, it is believed
that all other connected graphs admit at least some antimagic labeling. This is proposed as
a conjecture by Hartsfield and Ringel [1] which states that “Every connected graph other
than K2 are antimagic”. Hartsfield and Ringel [1] proved that stars, paths, cycles, wheels,
complete graphs and complete bipartite graphs, K2,m, m ≥ 3 admit antimagic labeling.

In cryptography, Data Encryption Standard (DES) is a block cipher in which the data
is encrypted in blocks. Compared to DES, the Advanced Encryption Standard (AES is
a symmetric block cipher cryptographic algorithm used for carrying out the encryption)
has more security. Antimagic labeling of a network (graph) is used in AES to perform
the encryption of data in blocks of a size of 128 bits each. Likewise, antimagic labeling is
used in many fields of engineering. By also using an antimagic labeling of a graph G, we
can give a proper colouring to the graph G. For the study on antimagic labeling and its
connection with the vertex colouring, refer to [2–4].

Alon et al. [5] confirmed that the conjecture stands true for some classes of graphs.
That is, if G is a graph with n vertices and there exist a absolute constant c such that
either δ(G) ≥ c log n or ∆(G) ≥ n − 2, then the graph G admits an antimagic labeling.
Later, Yilma [6] proved that a graph with maximum degree greater than or equal to n− 3
is antimagic.

Researchers have adopted various new techniques to prove some interesting classes
of graphs that have an antimagic labeling. For detailed survey, one can refer to [7–15].
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Although researchers studied the antimagicness of several classes of graph, the conjecture
of Hartsfield and Ringel still remains open, even for trees.

Regular graphs are well-studied networks in computer science and most of them are
symmetric nature. So, studying the antimagicness of regular graphs is more attractive.
Initially, the antimagicness of regular graphs were extensively studied by many researchers
and finally, in 2016, it was shown that all regular graphs are antimagic. Cranston et al. [16]
proved that all odd regular graphs are antimagic, while the antimagicness of the even
regular graphs were verified by Chang et al. [17] in 2016. In 2015 , Bèrczi et al. [18] gave
proof of the antimagicness of even regular graphs but they realized that the proof of the
main theorem of the step uses an invalid assumption. Hence, 4 years later in 2019, they
rectified the error and proved that all regular graphs admit antimagic labeling.

Theorem 1 (See [17]). For k ≥ 2, every k-regular graph is antimagic.

Once regular graphs were proven to be antimagic, researchers focused on proving the
antimagicness of graph products using the base as a regular graphs. Liang and Zhu [19]
proved that if G is a k-regular graph and H is any arbitrary graph with 1 ≤ |V(H)| −
1 ≤ |E(H)|, then the Cartesian product of graph G and H admits an antimagic labeling.
Cheng [20] considers a regular graph G1 and G2 that has the degree bounded with some
inequality, and in this case the Cartesian product of G1 and G2 again admits antimagic
labeling. In addition, they investigated whether two or more regular graphs with positive
degree (mandatorily not connected) admit an antimagic labeling. Wang and Hsiao [21]
explored new classes of sparse antimagic graphs through Cartesian products. Additionally,
Wang and Hsiao [21] considers G as an arbitrary graph and H as a d−regular graph
with d > 1, and then they proved that the lexicographic product of graph G and H
admits an antimagic labeling. Oudone Phanalasy et al. [22] proved that certain families
of Cartesian products of regular graphs are antimagic. Daykin et al. [23] constructed
two families of graphs known to be antimagic, namely sequential generalized corona
graph and generalized snowflake graph. Wenhui et al. [24] investigated antimagicness for
lexicographic product Pm and Pn where m, n ≥ 3. Yingyu et al. [25] assumed G as a complete
bipartite graph Km,n and H as a path graph Pk, and then they proved that the lexicographic
product of graph G and H admits an antimagic labeling. Recently, Yingyu et al. [26]
constructed oriented Eulerian circuit and used Siamese method to achieve an antimagic
labeling for the composition of graph G and Pn. The antimagicness of joined graphs is
considered by Wang et al. [27]. If G is a graph with minimum degree of at least r and H
is a graph with maximum degree of at most 2r − 1 then the join of G and H admits an
antimagic labeling for |V(H)| ≥ |V(G)|. Bača et al. [28] used the antimagic labeling of join
graphs to prove the antimagicness of complete multi-partite graphs.

Inspired by the results on the antimagicness of product graphs, in this paper we discuss
the antimagicness for rooted and corona products of regular graphs. More particularly,
we proved that if we let G be a connected t-regular graph and H be a connected k-regular
graph, then the rooted product of G and H admits antimagic labeling when t ≥ k. We
also proved that if we let G be a connected t-regular graph and H be a connected k-regular
graph, then the corona product of G and H admits antimagic labeling for all t, k ≥ 2.

A rooted graph H is a graph that has one vertex, named a root vertex, as its fixed
vertex. Let G be a n vertex graph andH be a sequence of n rooted graphs H1, H2, . . . , Hn
such that Hi

∼= H and v is the root vertex of H. The rooted product of the graphs G and
H obtained from G such that H1, H2, · · · , Hn by identifying the root vertex of Hi to the
ith vertex of G. The rooted product of graph G and H is denoted by G ◦v H. The corona
product of the graph G and H is the graph obtained by taking one copy of G and n copies
of H, Hi, 1 ≤ i ≤ n and joining the ith vertex of G to each vertex from the ith copy of H and
it is denoted by G� H.
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2. Main Results

In this section, we prove our main results. Before proving the main result we prove
some basic lemmas and observations which will be used in the main results.

Lemma 1. If G is a k-regular graph with m edges, then for any vertex u in V(G),
k(k + 1)

2
≤

φ f (u) ≤ km− k(k− 1)
2

, where f is an antimagic labeling of G.

Proof. Let G be a k-regular graph with m edges. By Theorem 1 it admits an antimagic
labeling. Let f be an antimagic labeling of G, then for any vertex u in V(G), φ f (u)
takes minimum when their incident edges obtain labels from the set {1, 2, · · · , k} and
φ f (u) take the maximum value when their incident edges obtain labels from the set
{m, m− 1, · · · , m− (k− 1)}.

Hence,
k(k + 1)

2
≤ φ f (u) ≤ km− k(k− 1)

2
.

Figure 1 shows the antimagic labeling of a 3-regular graph G with 9 edges. From Figure 1,
we also observe that the range of the vertex sum of the vertices of G are from 6 to 22.

From Lemma 1, we have the following observation.

Observation 1. If G be a k-regular graph with f as its antimagic labeling. Let u, v be any two
vertices of G such that if φ f (u) ≥ φ f (v) then 0 ≤ φ f (u)− φ f (v) ≤ km− k2.

An antimagic labeling of a 2-regular graph H with 3 edges is given in Figure 2.
From Figure 2 we also observe that the range in the difference of the vertex sum of any two
vertices of H are from 0 to 2.

Theorem 2. Let G be a connected t-regular graph and let H be a connected k-regular graph, t ≥ k
then the rooted product of G and H admits antimagic labeling.

Proof. Let G be a t-regular graph with n vertices and m edges and let H be a k-regular
graph with p vertices and q edges. By Theorem 1, the graphs G and H admit antimagic
labeling. Let f and g be the antimagic labeling of G and H respectively. By definition of
f , f : E(G) → {1, 2, · · · , m} such that φ f (u) 6= φ f (v) for any two distinct vertices u and
v in G. By definition of g, g : E(H) → {1, 2, · · · , q} such that φg(x) 6= φg(y) for any two
distinct vertices x and y in H.

Let us name the vertices of G as v1, v2, · · · , vn such that,

φ f (v1) < φ f (v2) < · · · < φ f (vn) (1)

and also name the vertices of H as u1, u2, · · · , up such that,

φg(u1) < φg(u2) < · · · < φg(up). (2)

Construct the rooted product of G and H, G ◦v H by fixing the root vertex of H as up.
Note that the number of edges in G ◦v H is nq + m. Let us name the vertices of G ◦v H as
follows. The vertices of G are named as the same as the earlier, that is v1, v2, · · · , vn and
then name the vertices of Hi, for i = 1, 2, · · · , n (ith isomorphic copy of H) as ui

1, ui
2, · · · , ui

p.
That is the vertex ul in H is now has the name ui

l in Hi for l = 1, 2, · · · , p. Note that

vi = ui
p. That is, the set of vertices

{
u1

p, u2
p, · · · , un

p

}
induces the graph G. Before defining

the antimagic labeling of G ◦v H, we label the edges of Hi by using the edge labeling g of H
as follows:

gi : E(Hi)→ {1, 2, · · · , q} (3)
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for an edge e = (ui
a, ui

b) in Hi, gi(e) = g(e′) where e′ as an edge (ua, ub) in H. Then by
definition of g and (2) for each i, i = 1, 2, · · · , n.

φgi (u
i
1) < φgi (u

i
2) < · · · < φgi (u

i
p). (4)

where ui
1, ui

2, · · · , ui
p are the vertices of Hi in G ◦v H.

Now we define h : E(G ◦v H)→ {1, 2, · · · , nq + m} by,

h(e) =

{
gi(e) + (i− 1)q, if e is in Hi

f (e) + nq, if e is in G
(5)

From the above labeling h, we observe that, for all i, 1 ≤ i ≤ n

φh(vi) = φh(ui
p) = φ f (vi) + φgi (u

i
p) + kq(i− 1) + tnq (6)

and
φh(ui

l) = φgi (u
i
l) + kq(j− 1) for every l, l = 1, 2, · · · , p− 1. (7)

In order to prove that h is an antimagic labeling of G ◦v H, we need to prove that
for any two distinct vertices x and y in G ◦v H such that φh(x) 6= φh(y). We consider the
following possible cases on the vertices of x and the vertices of y in G ◦v H.

(i) x in Hi and y in Hj for i, j = 1, 2, · · · , n and x 6= ui
p & y 6= uj

p.

(ii) x in G and y in Hj when x 6= uj
p, j = 1, 2, · · · n.

(iii) x and y are the vertices of G.

Case 1. For any two distinct vertices x and y in G ◦v H, where x is in Hi and y in Hj,

for i, j, 1 ≤ i, j ≤ n and x 6= ui
p & y 6= uj

p.
Case 1.1. When i = j, then both the vertex x and y are from Hi. By definition on the

naming of the vertices of Hi, x = ui
r and y = ui

s for some r, s, 1 ≤ r, s ≤ p− 1, r 6= s. Then
by definition of h and by (7) we have,

φh(x) = φh(ui
r) = φgi (u

i
r) + k(i− 1)q

φh(y) = φh(ui
s) = φgi (u

i
s) + k(i− 1)q

Without loss of generality, we assume that r < s. By (4), we have φgi (u
i
r) < φgi (u

i
s),

therefore φh(x) < φh(y). Hence φh(x) 6= φh(y).
Case 1.2. When i 6= j, then the vertex x in Hi and the vertex y in Hj.

By definition on the naming of vertices of Hi and Hj, x = ui
r and y = uj

s for some r, s,
1 ≤ r, s ≤ q− 1.

Without loss of generality we assume i < j. Then by definition of h and by (7) we have,

φh(x) = φh(ui
r) = φgi (u

i
r) + k(i− 1)q

φh(y) = φh(u
j
s) = φgj(u

j
s) + k(j− 1)q.

Case 1.2.1. If r ≤ s. Then by (2),

φgi (u
i
r) ≤ φgj(u

j
s). (8)

Consider,

φh(y)− φh(x) = φgj(u
j
s)− φgi (u

i
r) + kq(j− i)

φh(y)− φh(x) > 0 since j > i & by (8)

⇒ φh(y) 6= φh(x)
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Case 1.2.2. If r > s. Then by (2), φgi (u
i
r) ≥ φgj(u

j
s)

Consider,

φh(y)− φh(x) = φgj(u
j
s)− φgi (u

i
r) + kq(j− i)

Since gi and gj are antimagic labeling of Hi and Hj respectively, by Observation 1,
we have,

φgj(u
j
s)− φgi (u

i
r) ≥ k2 − kq

∴ φh(y)− φh(x) ≥ k2 − kq + kq(j− i)

φh(y)− φh(x) ≥ k2 + kq(j− i− 1).

⇒ φh(y)− φh(x) > 0. Since k2 > 0 and kq(j− i− 1) ≥ 0.

Hence, φh(y) 6= φh(x)

Case 2. For any two distinct vertices x and y in G ◦v H such that x in G and y in Hj for

j = 1, 2, · · · , n such that y 6= uj
p.

By definition on naming the vertices of G, x = vi = ui
p and by definition on the

naming of the vertices of Hj, y = uj
r for some r, 1 ≤ r ≤ p− 1. Then by definition of h and

by (6) and (7). We have

φh(x) = φh(vi) = φh(ui
p) = φ f (vi) + φgi (u

i
p) + kq(i− 1) + tnq.

φh(y) = φh(u
j
r) = φgj(u

j
r) + kq(j− 1).

By (4), we have
φgi (u

i
p) > φgj(u

j
r) (9)

Case 2.1. When i ≥ j for 1 ≤ j ≤ i ≤ n. Consider

φh(x)− φh(y) = φ f (vi) + φgi (u
i
p)− φgj(u

j
r) + kq(i− j) + tnq

By (9),
φh(x)− φh(y) ≥ φ f (vi) + kq(i− j) + tnq

Since, kq(i − j) ≥ 0, tnq > 0, φ f (vi) > 0 ⇒ φh(x)− φh(y) > 0. Hence, φh(x) 6=
φh(y).

Case 2.2. When i < j for 1 ≤ i < j ≤ n. Consider

φh(x)− φh(y) = φ f (vi) + φgi (u
i
p)− φgj(u

j
r) + kq(i− j) + tnq

By (9),
φh(x)− φh(y) ≥ φ f (vi) + kq(i− j) + tnq

By definition of f , φ f (vi) ≥
t(t + 1)

2
.

⇒ φh(x)− φh(y) ≥
t(t + 1)

2
+ kq(i− j) + tnq
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Since t ≥ k & −1 ≤ i− j ≤ 1− n

⇒ φh(x)− φh(y) ≥
k(k + 1)

2
+ kq(1− n) + knq

φh(x)− φh(y) > 0 ∵ k > 0 & kq > 0.

⇒ φh(x) 6= φh(y)

Case 3. Both the vertices are from G. By definition on the naming of the vertices of G,
x = ui

p and y = uj
p for some i, j, 1 ≤ i, j ≤ n & i 6= j. By (6),

φh(x) = φh(ui
p) = φ f (vi) + φgi (u

i
p) + kq(i− 1) + tnq

φh(y) = φh(u
j
p) = φ f (vj) + φgj(u

j
p) + kq(j− 1) + tnq

Without loss of generality, we consider i < j, therefore by (1) and φ f (vj)− φ f (vi) > 0

and by (4), φgi (u
i
p) < φgj(u

j
p). Consider,

φh(y)− φh(x) = φ f (vj)− φ f (vi) + φgj(u
j
p)− φgi (u

i
p) + kq(j− i)

Since, φ f (vj)− φ f (vi) > 0, φgj(u
j
p)− φgi (u

i
p) > 0 & kq(j− i) > 0.⇒ φh(y)− φh(x) >

0. Hence, φh(y) 6= φh(x).

Figures 1–4 illustrate the proof Theorem 2. An antimagic labeling of a 3-regular
graph G and the antimagic labeling of a 2-regular graph H are given in Figures 1 and 2,
respectively. In Figure 3, the six copies of the graph H are considered with their labeling
function gi, 1 ≤ i ≤ 6. The rooted product of the graph G and H with their antimagic
labeling is given in Figure 4. Here, the root vertex of the graph H is chosen as u3.

v3(15)

v6(22)

v4(16)

v1(6)

v2(14)

v5(17)

31

2

6
5

8

49

7

Figure 1. A graph G with t = 3, n = 6, m = 9.

u2(4)

u1(3)

u3(5)

1 2

3

Figure 2. A graph H with k = 2, p = 3, q = 3.
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u1
2 u1

3

u1
1

u2
2

u2
1

u2
3 u3

2

u3
1

u3
3 u4

2

u4
1

u4
3 u5

2

u5
1

u5
3

u6
1

u6
2 u6

3
g1 g2 g3 g4 g5 g6

1 2

3

2

3

1 2

3

1 2

3

1 2

3

1 2

3

1

Figure 3. 6 copies of H.

21

23

2227

25

19
20

24

26

1

32

5 4
6

14
1315

8

7

9

17

16 18

1110

12

Figure 4. Antimagic labeling of G ◦v H.

Theorem 3. Let G be a connected t-regular graph and H be a connected k-regular graph then the
corona product of G and H admits antimagic labeling, ∀ t, k ≥ 2.

Proof. Let G be a t-regular graph with n vertices and m edges and let H be a k-regular
graph with p vertices and q edges. As G and H are regular graphs, by Theorem 1, they
admits an antimagic labeling. Let f and g be antimagic labeling of G and H respectively.
By definition of f , f : E(G)→ {1, 2, · · · , m} such that φ f (u) 6= φ f (v) for any two distinct
vertices u and v in G. By definition of g, g : E(H)→ {1, 2, · · · , q} such that φg(x) 6= φg(y)
for any two distinct vertices x and y in H.

Let us name the vertices of G as v1, v2, · · · , vn such that,

φ f (v1) < φ f (v2) < · · · < φ f (vn) (10)

and also name the vertices of H as u1, u2, · · · , up such that,

φg(u1) < φg(u2) < · · · < φg(up). (11)

Construct the corona product of G and H, G�H by joining the edge with ith vertex of G
with each vertex from ith copy of H. Note that the number of edges in G�H is n(p+ q)+m.
Let us name the vertices of G � H as follows. The vertices of G are named as the same
as the earlier, that is v1, v2, · · · , vn and then name the vertices of Hi, for i = 1, 2, · · · , n (ith

isomorphic copy of H) as ui
1, ui

2, · · · , ui
p. That is the vertex ul in H is now has the name
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ui
l in Hi for l = 1, 2, · · · , p. Before defining the antimagic labeling of G� H, we label the

edges of Hi by using the edge labeling g of H as follows:

gi : E(Hi)→ {1, 2, · · · , q} (12)

for an edge e = (ui
a, ui

b) in Hi, gi(e) = g(e′) where e′ as an edge (ua, ub) in H that corre-
sponding to the edge e in Hi. Then by definition of gi and (11) for each i, i = 1, 2, · · · , n.

φgi (u
i
1) < φgi (u

i
2) < · · · < φgi (u

i
p). (13)

where ui
1, ui

2, · · · , ui
p are the vertices of Hi in G� H.

Now we define h : E(G� H)→ {1, 2, · · · , n(p + q) + m} by,

h(e) =


gi(e) + (i− 1)q, if e ∈ E(Hi)

f (e) + n(p + q), if e ∈ E(G)

l + nq + p(i− 1), if viui
l ∈ E(G� H) for i = 1, 2, · · · , n & l = 1, 2, · · · , p

(14)

From the above labeling h, we observe that, for all i, 1 ≤ i ≤ n

φh(vi) = φ f (vi) +
p(p + 1)

2
+ npq + p2(i− 1) + nt(p + q) (15)

and

φh(ui
l) = φgi (u

i
l) + nq + l + (kq + p)(i− 1), ∀ i = 1, 2, · · · , n & l = 1, 2, · · · , p. (16)

In order to prove that h is an antimagic labeling of G � H, we need to prove that
for any two distinct vertices x and y in G� H such that φh(x) 6= φh(y). We consider the
following possible cases on the vertices of x and the vertices of y in G� H.

(i) x in Hi and y in Hj for i, j = 1, 2, · · · , n.
(ii) x in G and y in Hj for j = 1, 2, · · · , n.
(iii) x and y are the vertices of G.

Case 1. For any two distinct vertices x and y in G� H, where x is in Hi and y in Hj,
for each i, j, 1 ≤ i, j ≤ n.

Case 1.1. When i = j, then both the vertex x and y are from Hi. By definition on
the naming of the vertices of Hi, x = ui

r and y = ui
s for some r, s, 1 ≤ r, s ≤ p. Then, by

definition of h and by (16), we have

φh(x) = φh(ui
r) = φgi (u

i
r) + nq + r + (kq + p)(i− 1)

φh(y) = φh(ui
s) = φgi (u

i
s) + nq + s + (kq + p)(i− 1)

Without loss of generality, we assume that r < s. By (13), we have φgi (u
i
r) < φgi (u

i
s),

therefore φh(x) < φh(y). Hence φh(x) 6= φh(y).
Case 1.2. When i 6= j, then the vertex x in Hi and the vertex y in Hj. By definition on

the naming of vertices of Hi and Hj, let x = ui
r and y = uj

s for some r, s, 1 ≤ r, s ≤ p.
Without loss of generality we assume i < j. Then by definition of h and by (16) we have

φh(x) = φh(ui
r) = φgi (u

i
r) + nq + r + (kq + p)(i− 1)

φh(y) = φh(u
j
s) = φgj(u

j
s) + nq + s + (kq + p)(j− 1)

Case 1.2.1. If r ≤ s. Then by (13) we have, φgi (u
i
r) ≤ φgj(u

j
s). Consider

φh(y)− φh(x) = φgj(u
j
s)− φgi (u

i
r) + (s− r) + (kq + p)(j− i)
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Since s− r ≥ 0 and j− i > 0, φgj(u
j
s)− φgi (u

i
r) ≥ 0

Hence, φh(y)− φh(x) > 0⇒ φh(y) 6= φh(x)

Case 1.2.2. If r > s. Then by (13) we have, φgi (u
i
r) > φgj(u

j
s) Consider φh(y)− φh(x) =

φgj(u
j
s)− φgi (u

i
r) + (s− r) + (kq + p)(j− i).

Since gi and gj are the antimagic labelings of Hi and Hj, respectively, and by Observation 1,

φgj(u
j
s)− φgi (u

i
r) ≥ k2 − kq and also 1− p ≤ s− r ≤ −1

φh(y)− φh(x) ≥ k2 − kq + 1− p + kq(j− i) + p(j− i)

φh(y)− φh(x) ≥ k2 + 1 ∵ 1 ≤ j− i ≤ n− 1

Hence, φh(y)− φh(x) > 0 (since k2 > 0)⇒ φh(y) 6= φh(x).
Case 2. For any two distinct vertices x and y in G� H such that x in G and y in Hj for

j = 1, 2, · · · , n.
By definition on naming the vertices of G, x = vi and by definition on the naming

of the vertices of Hj, let y = uj
s for some s, 1 ≤ s ≤ p. Then, by definition of h and by

(15) and (16), we have

φh(x) = φh(vi) = φ f (vi) +
p(p + 1)

2
+ npq + p2(i− 1) + nt(p + q)

φh(y) = φh(u
j
s) = φgj(u

j
s) + nq + s + (kq + p)(j− 1).

Consider

φh(x)− φh(y) = φ f (vi)− φgj(u
j
s) +

p(p + 1)
2

+ npq + p2(i− 1) + ntp + ntq

− nq− s− (kq + p)(j− 1)

We apply maximum value for the negative terms of above equations i.e., s ≤ p, j ≤ n

and by Lemma 1, φgj(u
j
s) ≤ kq− k(k− 1)

2

φh(x)− φh(y) = φ f (vi)− kq +
k(k− 1)

2
+

p(p + 1)
2

+ npq + p2(i− 1) + ntp

+ ntq− nq− p− nkq− np + kq + p

= φ f (vi) +
k(k− 1)

2
+

p(p + 1)
2

+ nq(p− k) + p2(i− 1)

+ np(t− 1) + nq(t− 1)

Since, i − 1 ≥ 0, t − 1 ≥ 1, p ≥ k and k, p, φ f (vi) > 0. Hence, φh(x) − φh(y) > 0
⇒ φh(x) 6= φh(y).

Case 3. x and y are the vertices of G. By definition on the naming of the vertices of G,
x = vi and y = vj for some i, j, 1 ≤ i, j ≤ n & i 6= j. By (15),

φh(x) = φh(vi) = φ f (vi) +
p(p + 1)

2
+ npq + p2(i− 1) + nt(p + q)

φh(y) = φh(vj) = φ f (vj) +
p(p + 1)

2
+ npq + p2(j− 1) + nt(p + q)

Without loss of generality, we consider i < j, therefore by (10), φ f (vi) < φ f (vj)
Consider
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φh(y)− φh(x) = φh(vj)− φh(vi)

= φ f (vj)− φ f (vi) + p2(j− i) (since, φ f (vj) > φ f (vi))

φh(y)− φh(x) > 0.

Hence, φh(y) 6= φh(x).

Figures 5–7 illustrate the proof Theorem 3. An antimagic labeling of a 2-regular graph
G and the antimagic labeling of a 3-regular graph H are given in Figures 5 and 6 respectively.
The corona product of the graph G and H with their antimagic labeling is given in Figure 7.

v2(4)

v1(3)

v3(5)

1 2

3

Figure 5. A graph G with t = 2, n = 3, m = 3.

u3(15)

u6(22)

u4(16)

u1(6)

u2(14)

u5(17)

31

2

6
5

8

49

7

Figure 6. A graph H with k = 3, p = 6, q = 9.
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1

5 6
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9

8
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12
11

10

13

18
14

15

17

16

19
20

21

22 23 24

25

2627

46 47

48

Figure 7. Antimagic labeling of G� H.
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3. Conclusions

We have given an antimagic labeling for the rooted product of graphs G and H where
G is a t-regular connected graph and H is a k-regular connected graph with the condition
t ≥ k. Moreover, we proved that there exists an antimagic labeling of the corona product
of graph G and H where G is a t-regular connected graph and H is a k-regular connected
graph for all t, k ≥ 2.
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