On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials
Abstract
:1. Introduction
2. Coefficient Inequality
3. Distortion Theorem
4. Extreme Point
5. Radii of Starlikeness and Convexity
6. Partial Sums
7. Neighborhood Result
8. Integral Means’ Inequality
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Alessa, N.; Venkateswarlu, B.; Loganathan, K.; Karthik, T.S.; Reddy, P.T.; Sujatha, A.G. Certain class of analytic functions connected with q-analog of the Bessel function. J. Math. 2021, 2021, 9. [Google Scholar] [CrossRef]
- Alessa, N.; Venkateswarlu, B.; Reddy, P.T.; Loganathan, K.; Tamilvanan, K. A new subclass of analytic functions related to Mittag-Leffler type Poisson distribution series. J. Funct. Spaces 2021, 2021, 7. [Google Scholar] [CrossRef]
- Reddy, P.T.; Venkateswarlu, B. A certain subclass of uniformly convex functions defined by Bessel functions. Proy. J. Math. 2019, 38, 719–734. [Google Scholar]
- Venkateswarlu, B.; Reddy, P.T.; Sridevi, S.; Sujath, A. A certain subclass of analytic functions with negative coefficients defined by Gegenbauer polynomial. Tatra Mt. Math. Publ. 2021, 78, 73–84. [Google Scholar] [CrossRef]
- Qi, F. Some inequalities of the Bell polynomials. Preprints 2017, 10. [Google Scholar] [CrossRef]
- Howard, F.T. A special class of Bell polynomials. Math. Comp. 1980, 35, 977–989. [Google Scholar] [CrossRef]
- Ma, W.X. Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 2013, 411, 11. [Google Scholar] [CrossRef]
- Ma, W.X. Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 2013, 72, 41–56. [Google Scholar] [CrossRef]
- Ma, W.X. Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 2013, 8, 1139–1156. [Google Scholar] [CrossRef]
- Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Ser. A Math. 2019, 113, 1–9. [Google Scholar]
- Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Ser. A Math. 2019, 113, 557–567. [Google Scholar]
- Sun, Z.W.; Zagier, D. On a curious property of Bell numbers. Bull. Aust. Math. Soc. 2011, 84, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Chrysaphinou, O. On Touchard polynomials. Discret. Math. 1985, 54, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Nazir, A.; Usman, M.; Mohyud-Din, S.T.; Tauseef, M.D. Touchard polynomials method for integral equations. Int. J. Mod. Theor. Phys. 2014, 3, 74–89. [Google Scholar]
- Paris, R.B. The Asymptotes of the Touchard Polynomials: A uniform approximation. Math. Aeterna 2016, 6, 765–776. [Google Scholar]
- Touchard, J. Sur les cycles des substitutions. Acta Math. 1939, 70, 243–297. [Google Scholar] [CrossRef]
- Abdullha, J.T.; Naseer, B.S.; Abdllrazak, T. Numerical Solutions of Abel integral equations via Touchard and Laguerre polynomials. Int. J. Nonlinear Anal. Appl. 2021, 12, 1599–1609. [Google Scholar]
- Abdullah, J.T.; Ali, H.S. Laguerre and Touchard polynomials for linear Volterra integral and Integro differential equations. J. Phys. Conf. Ser. 2020, 1591, 012047. [Google Scholar] [CrossRef]
- Mirzaee, F. Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. Comput. Methods Differ. Equ. 2017, 5, 88–102. [Google Scholar]
- Boyadzhiev, K.N. Exponential polynomials, Stirling numbers and evaluation of some Gamma integrals. Abstr. Appl. Anal. 2009, 2009, 168672. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus; Dover Publications: Mineola, NY, USA, 1984. [Google Scholar]
- Şimsek, Y. Special Numbers on Analytic Functions. Appl. Math. 2014, 5, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Al-Shaqsi, K. On inclusion results of certain subclasses of analytic functions associated with generating function. AIP Conf. Proc. 2017, 1830, 070030. [Google Scholar]
- Mihoubi, M.; Maamra, M.S. Touchard polynomials, partial Bell polynomials and polynomials of binomial type. J. Integer. Seq. 2011, 14, 1–9. [Google Scholar]
- Lu, D.M. Construction of Touchard polynomial’s Photon Added Squeezing Vacuum State and its Nonclassical Properties. Int. J. Theor. Phys. 2022, 61, 1–9. [Google Scholar] [CrossRef]
- Zelaya, K.; Hussin, V.; Rosas-Ortiz, O. Constructing squeezed states of light with associated Hermite polynomials. Eur. Phys. J. Plus 2021, 136, 534. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M.; Owa, S. A class of distortion theorems involving certain operators of fractional calculus of starlike functions. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. College General Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Silvia, E.M. Partial sums of convex functions of order α. Houston J. Math. 1985, 11, 397–404. [Google Scholar]
- Ruscheweyh, S. Neighborhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Silverman, H. Integral means for univalent functions with negative coefficients. Houston J. Math. 1997, 23, 169–174. [Google Scholar]
- Silverman, H. A survey with open problems on univalent functions whose coefficients are negative. Rocky Mountain J. Math. 1991, 21, 1099–1125. [Google Scholar] [CrossRef]
- Littlewood, J.E. On inequalities in theory of functions. Proc. Lond. Math. Soc. 1925, 23, 481–519. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkateswarlu, B.; Thirupathi Reddy, P.; Altınkaya, Ş.; Boonsatit, N.; Hammachukiattikul, P.; Sujatha, V. On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials. Symmetry 2022, 14, 838. https://doi.org/10.3390/sym14040838
Venkateswarlu B, Thirupathi Reddy P, Altınkaya Ş, Boonsatit N, Hammachukiattikul P, Sujatha V. On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials. Symmetry. 2022; 14(4):838. https://doi.org/10.3390/sym14040838
Chicago/Turabian StyleVenkateswarlu, Bolenini, Pinninti Thirupathi Reddy, Şahsene Altınkaya, Nattakan Boonsatit, Porpattama Hammachukiattikul, and Vaishnavy Sujatha. 2022. "On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials" Symmetry 14, no. 4: 838. https://doi.org/10.3390/sym14040838
APA StyleVenkateswarlu, B., Thirupathi Reddy, P., Altınkaya, Ş., Boonsatit, N., Hammachukiattikul, P., & Sujatha, V. (2022). On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials. Symmetry, 14(4), 838. https://doi.org/10.3390/sym14040838