Topological BF Description of 2D Accelerated Chiral Edge Modes
Abstract
1. Introduction
Notations and Conventions
2. The Model: Bulk and Boundary
2.1. The Action
2.2. Equations of Motion and Boundary Conditions
2.3. Ward Identities
2.4. Algebra
3. The 2D Boundary Theory
- Identification of the 2D canonical variables in terms of boundary fields;
- Derivation of the most general 2D action;
- Bulk-boundary correspondence (holographic contact).
3.1. The 2D Canonical Variables
3.2. The 2D Action
3.3. Holographic Contact
3.4. Physical Interpretation
- : LR movers with opposite velocities.It is realized iforThis situation describes generic chiral Luttinger liquids [49], but also helical ones [33]. In fact, ordinary topological insulators [13,14,15,16,17], characterized by edge modes moving in opposite directions with equal velocitiesfall into this category. It is easy to see that the condition (120) is satisfied provided thatThe equal and opposite edge velocities therefore arewhich, still, for a generic bulk manifold, may have a spacetime dependence.
- : LR movers in the same direction.It is realized iforMoreover, in this case, we can recover the particular case of a pair of Hall systems [32], with edge excitations moving in the same direction with the same velocityrealized ifThe velocities of the edge modes in this case are
- : L or R mover not moving, which characterizes the quantum anomalous Hall Insulators [16]. This happens whenwhich means
4. The Role of Time-Reversal Symmetry
4.1.
4.1.1. Generic Non-Diagonal Metric
4.1.2. Diagonal Metric
4.2. Inherited T-Transformation
5. Conclusions
- Two edge excitations moving in opposite directions. This is realized in Hall systems, such as fractional quantum Hall with [32], and edge modes of quantum spin Hall systems, such as topological insulators (when ), possibly interacting [50], or nanowires [51] with additional magnetic fields acting on the velocities up to switching one off [52,53]. In higher dimensions, an effect of renormalization of chiral velocities (i.e., ) could be achieved by adding magnetic fields [54,55], or by structural deformations [56];
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Solutions of the Boundary Conditions
References
- Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1998, 117, 353. [Google Scholar] [CrossRef]
- Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rept. 1991, 209, 129–340. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef] [PubMed]
- Symanzik, K. Schrodinger Representation and Casimir Effect in Renormalizable Quantum Field Theory. Nucl. Phys. B 1981, 190, 1–44. [Google Scholar] [CrossRef]
- Blasi, A.; Maggiore, N.; Magnoli, N.; Storace, S. Maxwell-Chern–Simons Theory With Boundary. Class. Quant. Grav. 2010, 27, 165018. [Google Scholar] [CrossRef]
- Amoretti, A.; Blasi, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Duality and Dimensional Reduction of 5D BF Theory. Eur. Phys. J. C 2013, 73, 2461. [Google Scholar] [CrossRef]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Holography in flat spacetime: 4D theories and electromagnetic duality on the border. J. High Energy Phys. 2014, 4, 142. [Google Scholar] [CrossRef]
- Bertolini, E.; Maggiore, N. Holographic Projection of Electromagnetic Maxwell Theory. Symmetry 2020, 12, 1134. [Google Scholar] [CrossRef]
- Stone, M. Edge Waves in the Quantum Hall Effect. Ann. Phys. 1991, 207, 38–52. [Google Scholar] [CrossRef]
- Wen, X.G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 1992, 6, 1711–1762. [Google Scholar] [CrossRef]
- Blasi, A.; Ferraro, D.; Maggiore, N.; Magnoli, N.; Sassetti, M. Symanzik’s Method Applied to the Fractional Quantum Hall Edge States. Ann. Phys. 2008, 17, 885–896. [Google Scholar] [CrossRef]
- Maggiore, N. From Chern–Simons to Tomonaga–Luttinger. Int. J. Mod. Phys. A 2018, 33, 1850013. [Google Scholar]
- Moore, J.E. The birth of topological insulators. Nature 2010, 464, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Moore, J.E. Three-Dimensional Topological Insulators. Ann. Rev. Condens. Matter Phys. 2011, 2, 55–78. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar]
- Cho, G.Y.; Moore, J.E. Topological BF field theory description of topological insulators. Ann. Phys. 2011, 326, 1515–1535. [Google Scholar] [CrossRef]
- Blasi, A.; Braggio, A.; Carrega, M.; Ferraro, D.; Maggiore, N.; Magnoli, N. Non-Abelian BF theory for 2 + 1 dimensional topological states of matter. New J. Phys. 2012, 14, 013060. [Google Scholar] [CrossRef]
- Amoretti, A.; Blasi, A.; Maggiore, N.; Magnoli, N. Three-dimensional dynamics of four-dimensional topological BF theory with boundary. New J. Phys. 2012, 14, 113014. [Google Scholar] [CrossRef]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Introduction of a boundary in topological field theories. Phys. Rev. D 2014, 90, 125006. [Google Scholar] [CrossRef]
- Kaç, V. Simple graded algebras of finite growth. Izv. Akad. Nauk SSSR Ser. Mat. 1968, 32, 1323–1367, Erratum in Math. USSR-Izv. 1968, 2, 1271–1311. [Google Scholar]
- Moody, R. Lie Algebras associated with generalized Cartan matrices. Bull. Am. Math. Soc. 1967, 73, 217–221. [Google Scholar] [CrossRef]
- Floreanini, R.; Jackiw, R. Selfdual Fields as Charge Density Solitons. Phys. Rev. Lett. 1987, 59, 1873. [Google Scholar] [PubMed]
- Kane, B.E.; Tsui, D.C.; Weimann, G. Evidence for edge currents in the integral quantum Hall effect. Phys. Rev. Lett. 1987, 59, 1353. [Google Scholar] [CrossRef]
- Bocquillon, E.; Freulon, V.; Berroir, J.M.; Degiovanni, P.; Plaçais, B.; Cavanna, A.; Jin, Y.; Fève, G. Separation of neutral and charge modes in one-dimensional chiral edge channels. Nat. Commun. 2013, 4, 1839. [Google Scholar] [CrossRef]
- Wen, X.G. Gapless Boundary Excitations in the Quantum Hall States and in the Chiral Spin States. Phys. Rev. B 1991, 43, 11025–11036. [Google Scholar] [CrossRef]
- Wen, X.G. Electrodynamical Properties of Gapless Edge Excitations in the Fractional Quantum Hall States. Phys. Rev. Lett. 1990, 64, 2206. [Google Scholar] [CrossRef]
- Kane, C.L.; Fisher, M.P. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 1995, 51, 13449–13466. [Google Scholar] [CrossRef][Green Version]
- Hashisaka, M.; Fujisawa, T. Tomonaga-Luttinger-liquid nature of edge excitations in integer quantum Hall edge channels. Rev. Phys. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Wen, X.G. Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave. Phys. Rev. B 1991, 44, 5708. [Google Scholar] [CrossRef]
- Bertolini, E.; Gambuti, G.; Maggiore, N. Notes from the bulk: Metric dependence of the edge states of Chern-Simons theory. Phys. Rev. D 2021, 104, 105011. [Google Scholar] [CrossRef]
- Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 1995, 44, 405–473. [Google Scholar] [CrossRef]
- Wu, C.; Bernevig, B.; Zhang, S. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 2006, 96, 106401. [Google Scholar]
- Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.C. Quantum Anomalous Hall Effect in Hg1-yMnyTe Quantum Wells. Phys. Rev. Lett. 2008, 101, 146802. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhang, W.; Zhang, H.J.; Zhang, S.C.; Dai, X.; Fang, Z. uantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef]
- Basler, M. Functional methods for arbitrary densities in curved spacetime. Fortsch. Phys. 1993, 41, 1–43. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity. 2021. Available online: http://www.blau.itp.unibe.ch/newlecturesGR.pdf (accessed on 5 March 2022).
- Nakanishi, N. Covariant Quantization of the Electromagnetic Field in the Landau Gauge. Prog. Theor. Phys. 1966, 35, 1111–1116. [Google Scholar] [CrossRef]
- Lautrup, B. Canonical Quantum Electrodynamics in Covariant Gauges. Mat.-Fys. Meddelelser Udgivet Det K. Dan. Vidensk. Selsk. 1967, 35, NORDITA-214. [Google Scholar]
- Blasi, A.; Maggiore, N. Topologically protected duality on the boundary of Maxwell-BF theory. Symmetry 2019, 11, 921. [Google Scholar] [CrossRef]
- Nash, C.; Sen, S. Topology and Geometry for Physicists; Academic Press: Cambridge, MA, USA, 1988; ISBN 9780080570853. [Google Scholar]
- Warner, F.W. Foundations of Differentiable Manifolds and Lie Groups; Springer: Berlin/Heidelberg, Germany, 1983; ISBN 9780387908946. [Google Scholar]
- Mack, G. Introduction to conformal invariant quantum field theory in two and more dimensions. In Nonperturbative Quantum Field Theory; Cargèse Lectures; Hooft, G., Ed.; Plenum Press: New York, NY, USA, 1988; ISBN 978146130729-7. [Google Scholar]
- Becchi, C.; Piguet, O. On the Renormalization of Two-dimensional Chiral Models. Nucl. Phys. B 1989, 315, 153–165. [Google Scholar] [CrossRef][Green Version]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. 3 + 1D Massless Weyl spinors from bosonic scalar-tensor duality. Adv. High Energy Phys. 2014, 2014, 635286. [Google Scholar] [CrossRef]
- Maggiore, N. Holographic reduction of Maxwell-Chern-Simons theory. Eur. Phys. J. Plus 2018, 133, 281. [Google Scholar]
- Maggiore, N. Conserved chiral currents on the boundary of 3D Maxwell theory. J. Phys. A 2019, 52, 115401. [Google Scholar]
- Kane, C. Lectures on Bosonization. Available online: https://www.physics.upenn.edu/~kane/pedagogical/boulderlec12.pdf (accessed on 5 March 2022).
- Wen, X.G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons; Oxford Scholarship Online: Oxford, UK, 2010; ISBN 9780199227259. [Google Scholar] [CrossRef]
- Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M. Time-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices. Phys. Rev. B 2015, 92, 195414. [Google Scholar] [CrossRef]
- Meng, T.; Loss, D. Strongly anisotropic spin response as a signature of the helical regime in Rashba nanowires. Phys. Rev. B 2013, 88, 035437. [Google Scholar] [CrossRef]
- Středa, P.; Šeba, P. Antisymmetric Spin Filtering in One-Dimensional Electron Systems with Uniform Spin-Orbit Coupling. Phys. Rev. Lett. 2003, 90, 256601. [Google Scholar] [CrossRef]
- Heedt, S.; Traverso Ziani, N.; Crepin, F.; Prost, W.; Trellenkamp, S.; Schubert, J.; Schapers, T. Signatures of interaction-induced helical gaps in nanowire quantum point contacts. Nat. Phys. 2017, 13, 563–567. [Google Scholar] [CrossRef]
- Soluyanovv, A.A.; Gresch, D.; Wang, Z.; Wu, Q.-S.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl Semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef]
- Tchoumakov, S.; Civelli, M.; Goerbig, M.O. Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals. Phys. Rev. Lett. 2016, 117, 086402. [Google Scholar] [CrossRef]
- Goerbig, M.O.; Fuchs, J.-N.; Montambaux, G.; Piechon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and alpha-(BEDT-TTF)_2I_3. Phys. Rev. B 2008, 78, 045415. [Google Scholar] [CrossRef]
- Rebora, G.; Ferraro, D.; Rodriguez, R.H.; Parmentier, F.D.; Roche, P.; Sassetti, M. Electronic Wave-Packets in Integer Quantum Hall Edge Channels: Relaxation and Dissipative Effects. Entropy 2021, 23, 138. [Google Scholar] [CrossRef] [PubMed]
- Blasi, A.; Maggiore, N. Massive gravity and Fierz-Pauli theory. Eur. Phys. J. C 2017, 77, 614. [Google Scholar] [CrossRef]
- Blasi, A.; Maggiore, N. Massive deformations of rank-2 symmetric tensor theory (a.k.a. BRS characterization of Fierz–Pauli massive gravity). Class. Quant. Grav. 2017, 34, 015005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertolini, E.; Fecit, F.; Maggiore, N. Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry 2022, 14, 675. https://doi.org/10.3390/sym14040675
Bertolini E, Fecit F, Maggiore N. Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry. 2022; 14(4):675. https://doi.org/10.3390/sym14040675
Chicago/Turabian StyleBertolini, Erica, Filippo Fecit, and Nicola Maggiore. 2022. "Topological BF Description of 2D Accelerated Chiral Edge Modes" Symmetry 14, no. 4: 675. https://doi.org/10.3390/sym14040675
APA StyleBertolini, E., Fecit, F., & Maggiore, N. (2022). Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry, 14(4), 675. https://doi.org/10.3390/sym14040675

