Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces
Abstract
:1. Introduction
- Equation (3) becomes the Jensen’s FE (when )
2. Preliminaries
- (C1)
- ;
- (C2)
- (C3)
- for every .
- 1.
- ⇔;
- 2.
- , for all and ;
- 3.
- , for all .
- (1)
- ⇔ are linearly dependent;
- (2)
- is unchanged under permutations of ;
- (3)
- ;
- (4)
- (L1)
- if , for every , then ;
- (L2)
- a sequence in an nArch -normed space is a Cauchy sequence ⇔ converges to zero in .
Fixed Point Theorem
3. Main Results
4. Some Consequences
- (i)
- (ii)
- (iii)
- (iv)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Brzdęk, J.; Ciepliński, K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal. 2011, 74, 6861–6867. [Google Scholar] [CrossRef]
- Brzdęk, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 9, 278–327. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n-Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Ebadian, A.; Aghalary, R.; Abolfathi, M.A. On approximate dectic mappings in non-Archimedean spaces: A fixed point approach. Int. J. Nonlinear Anal. Appl. 2014, 5, 111–122. [Google Scholar]
- Gǎvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Moslehian, M.S.; Rassias, T.M. Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discret. Math. 2007, 1, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Rassias, T.M.; Semrl, P. On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc. Amer. Math. Soc. 1992, 114, 989–993. [Google Scholar] [CrossRef]
- Ulam, S.M. Problems in Modern Mathematics, Science Editions ed; Wiley: Hoboken, NJ, USA, 1960; Chapter IV. [Google Scholar]
- Gähler, S. Lineare 2-normierte Räume. Math. Nachr. 1964, 28, 1–43. (In German) [Google Scholar] [CrossRef]
- Gähler, S. Über 2-Banach-Räume. Math. Nachr. 1969, 42, 335–347. (In German) [Google Scholar] [CrossRef]
- Hensel, K. Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber. Dtsch. Math.-Ver. 1897, 6, 83–88. [Google Scholar] [CrossRef]
- White, A. 2-Banach spaces. Math. Nachr. 1969, 42, 43–60. [Google Scholar] [CrossRef]
- Beg, I.; Ahmed, M.; Nafadi, A. (JCLR) property and fixed point in non-Archimedean fuzzy metric spaces. Int. J. Nonlinear Anal. Appl. 2018, 9, 195–201. [Google Scholar]
- Katsaras, A.K.; Beoyiannis, A. Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math. J. 1999, 6, 33–44. [Google Scholar] [CrossRef]
- Khrennikov, A. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. In Mathematics and Its Applications; Kluwer Academic: Dordrecht, The Netherlands, 1997; Volume 427. [Google Scholar]
- Zúniga-Galindo, W.A. Advances in Non-Archimedean Analysis and Applications: The p-adic Methodology in STEAM-H; Springer Nature: Singapore, 2021. [Google Scholar]
- Brzdęk, J. Banach limit, fixed points and Ulam stability. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Mat. 2022, 116, 1–16. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; El-hady, E.; Lesniak, Z. On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Brzdęk, J.; Eghbali, N.; Kalvandi, V. On Ulam Stability of a Generalized Delayed Differential Equation of Fractional Order. Results Math. 2022, 77, 1–21. [Google Scholar] [CrossRef]
- Brzdȩk, J. Stability of the equation of the p-Wright affine functions. Aequ. Math. 2013, 85, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Daróczy, Z.; Lajkó, K.; Lovas, R.; Maksa, G.; Páles, Z. Functional equations involving means. Acta Math. Hung. 2007, 116, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M. An inequality for convex functions. Amer. Math. Mon. 1954, 61, 620–622. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdȩk, J.; Piszczek, M. On approximately p-Wright affine functions in ultrametric spaces. J. Funct. Spaces Appl. 2013, 2013, 723545. [Google Scholar] [CrossRef]
- Gilányi, A.; Páles, Z. On Dinghas-type derivatives and convex functions of higher order. Real Anal. Exch. 2002, 27, 485–493. [Google Scholar] [CrossRef]
- Najati, A.; Park, C. Stability of homomorphisms and generalized derivations on Banach algebras. J. Inequal. Appl. 2009, 2009, 595439. [Google Scholar] [CrossRef]
- Jarczyk, W.; Sablik, M. Duplicating the cube and functional equations. Results Math. 1994, 26, 324–335. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Liviu, C. Stability for a family of equations generalizing the equation of p-Wright affine functions. Appl. Math. Comput. 2016, 276, 158–171. [Google Scholar] [CrossRef]
- EL-Fassi, I. On a New Type of Hyperstability for Radical Cubic Functional Equation in Non-Archimedean Metric Spaces. Results Math. 2017, 72, 991–1005. [Google Scholar] [CrossRef]
- El-hady, E. On Stability of the Functional Equation of p-Wright Affine Functions in 2-Banach Spaces, Ulam Type Stability; Springer: Cham, Switzerland, 2019; pp. 131–141. [Google Scholar]
- El-hady, E. On stability of the functional equation of p-Wright affine functions in (2, α)-Banach spaces. J. Egypt. Math. Soc. 2019, 27, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Diagana, T.; François, R. Non-Archimedean Operator Theory; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Yang, X.; Chang, L.; Liu, G.; Shen, G. Stability of functional equations in (n,β)-normed spaces. J. Inequalities Appl. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- EL-Fassi, I.; Elqorachi, E.; Khodaei, H. A Fixed Point Approach to Stability of k-th Radical Functional Equation in Non-Archimedean (n,β)-Banach Spaces. Bull. Iran. Math. Soc. 2021, 47, 487–504. [Google Scholar] [CrossRef]
- Rasham, T.; Marino, G.; Shahzad, A.; Park, C.; Shoaib, A. Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces. Adv. Differ. Equ. 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Debnath, P.; Nabanita, K.; Radenovic, S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences; Springer: Singapore, 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hady, E.-S.; El-Fassi, I.-i. Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces. Symmetry 2022, 14, 633. https://doi.org/10.3390/sym14040633
El-Hady E-S, El-Fassi I-i. Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces. Symmetry. 2022; 14(4):633. https://doi.org/10.3390/sym14040633
Chicago/Turabian StyleEl-Hady, El-Sayed, and Iz-iddine El-Fassi. 2022. "Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces" Symmetry 14, no. 4: 633. https://doi.org/10.3390/sym14040633
APA StyleEl-Hady, E.-S., & El-Fassi, I.-i. (2022). Stability of the Equation of q-Wright Affine Functions in Non-Archimedean (n,β)-Banach Spaces. Symmetry, 14(4), 633. https://doi.org/10.3390/sym14040633