The In-Plane-Two-Folders Symmetric a-Plane AlN Epitaxy on r-Plane Sapphire Substrate
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis
2.2. X-ray Diffraction (XRD) Characterization
2.3. Atomic Force Microscopy (AFM) Characterization
2.4. Raman Spectroscopy Characterization
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nanishi, Y. The birth of the blue LED. Nat. Photonics 2014, 8, 884–886. [Google Scholar] [CrossRef]
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.-I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Jpn. J. Appl. Phys. 1996, 35, L74. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. High-Power GaN P-N Junction Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys. 1991, 30, L1998. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S.-i. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 1995, 34, L797. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382. [Google Scholar] [CrossRef]
- Leroux, M.; Grandjean, N.; Laügt, M.; Massies, J.; Gil, B.; Lefebvre, P.; Bigenwald, P. Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. Phys. Rev. B 1998, 58, R13371(R). [Google Scholar] [CrossRef]
- Masui, H.; Sonoda, J.; Pfaff, N.; Koslow, I.; Nakamura, S.; DenBaars, S.P. Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes. J. Phys. D Appl. Phys. 2008, 41, 165105. [Google Scholar] [CrossRef]
- Guo, Q.; Kirste, R.; Mita, S.; Tweedie, J.; Reddy, P.; Washiyama, S.; Breckenridge, M.H.; Collazo, R.; Sitar, Z. The polarization field in Al-rich AlGaN multiple quantum wells. Jpn. J. Appl. Phys. 2019, 58, SCCC10. [Google Scholar] [CrossRef]
- Schlichting, S.; Hönig, G.M.O.; Müßener, J.; Hille, P.; Grieb, T.; Westerkamp, S.; Teubert, J.; Schörmann, J.; Wagner, M.R.; Rosenauer, A.; et al. Suppression of the quantum-confined Stark effect in polar nitride heterostructures. Commun. Phys. 2018, 1, 48. [Google Scholar] [CrossRef] [Green Version]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Reich, C.; Guttmann, M.; Feneberg, M.; Wernicke, T.; Mehnke, F.; Kuhn, C.; Rass, J.; Lapeyrade, M.; Einfeldt, S.; Knauer, A.; et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 2015, 107, 142101. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhang, Y.; Hu, P.; Zhang, S.; Du, M.; Su, X.; Li, Q.; Yun, F. Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED. Photonics Res. 2020, 8, 806–811. [Google Scholar] [CrossRef]
- Kashima, Y.; Maeda, N.; Matsuura, E.; Jo, M.; Iwai, T.; Morita, T.; Kokubo, M.; Tashiro, T.; Kamimura, R.; Osada, Y. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 2018, 11, 012101. [Google Scholar] [CrossRef]
- Feezell, D.F.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Semipolar InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting. J. Disp. Technol. 2013, 9, 190–198. [Google Scholar] [CrossRef]
- Zhao, Y.; Sonoda, J.; Pan, C.-C.; Brinkley, S.; Koslow, I.; Fujito, K.; Ohta, H.; DenBaars, S.P.; Nakamura, S. 30-mW-Class High-Power and High-Efficiency Blue Semipolar (1011) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique. Appl. Phys. Express 2010, 3, 102101. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Tyagi, A.; Zhong, H.; Fellows, N.; Chung, R.B.; Saito, M.; Fujito, K.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. High power and high efficiency green light emitting diode on free-standing semipolar bulk GaN substrate. Phys. Stat. Sol. (RRL) 2007, 1, 162–164. [Google Scholar] [CrossRef]
- Jinno, D.; Otsuki, S.; Niimi, T.; Sugimori, S.; Daicho, H.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Annealing of the sputtered AlN buffer layer on r-plane sapphire and its effect on a-plane GaN crystalline quality. Phys. Stat. Sol (b) 2017, 254, 1600723. [Google Scholar] [CrossRef]
- Dinh, D.V.; Hu, N.; Honda, Y.; Amano, H.; Pristovsek, M. High-temperature thermal annealing of nonpolar (100) AlN layers sputtered on (100) sapphire. J. Cryst Growth 2018, 498, 377–380. [Google Scholar] [CrossRef]
- Jo, M.; Hirayam, H. Growth of non-polar a-plane AlN on r-plane sapphire. Jpn. J. Appl. Phys. 2016, 55, 05FA02. [Google Scholar] [CrossRef]
- Lin, C.-H.; Yamashita, Y.; Miyake, H.; Hiramatsu, K. Fabrication of high-crystallinity a-plane AlN films grown on r-plane sapphire substrates by modulating buffer-layer growth temperature and thermal annealing conditions. J. Cryst Growth 2017, 468, 845–850. [Google Scholar]
- Hayashi, Y.; Uesugi, K.; Shojiki, K.; Tohei, T.; Sakai, A.; Miyake, H. Thermal strain analysis considering in-plane anisotropy for sputtered AlN on c- and a-plane sapphire under high-temperature annealing. AIP Adv. 2021, 11, 095012. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, B.; Li, L.; Liu, Y.; Guo, W.; Talwar, D.N.; He, K.; Ferguson, I.T.; Wan, L.; Feng, Z.C. Optical and structural properties of AlN thin films deposited on different faces of sapphire substrates. Semicond. Sci. Technol. 2021, 36, 045012. [Google Scholar] [CrossRef]
- Peng, X.; Sun, J.; Liu, H.; Li, L.; Wang, Q.; Wu, L.; Guo, W.; Meng, F.; Chen, L.; Huang, F.; et al. Structural and optical properties of AlN sputtering deposited on sapphire substrates with various orientations. J. Semicond. 2022, 43, 022801. [Google Scholar] [CrossRef]
- Miyake, H.; Lin, C.-H.; Tokoro, K.; Hiramatsu, K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst Growth 2016, 456, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Susilo, N.; Hagedorn, S.; Jaeger, D.; Miyake, H.; Zeimer, U.; Reich, C.; Neuschulz, B.; Sulmoni, L.; Guttmann, M.; Mehnke, F.; et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett. 2018, 112, 041110. [Google Scholar] [CrossRef]
- Wang, D.; Uesugi, K.; Xiao, S.; Norimatsu, K.; Miyake, H. Low dislocation density AlN on sapphire prepared by double sputtering and annealing. Appl. Phys. Express 2020, 13, 095501. [Google Scholar] [CrossRef]
- Miyagawa, R.; Miyake, H.; Hiramatsu, K. a-plane AlN and AlGaN growth on r-plane sapphire by MOVPE. Phys. Stat. Sol (c) 2010, 7, 2107–2110. [Google Scholar] [CrossRef]
- Tahtamouni, T.A.; Sedhain, A.; Lin, J.Y.; Jiang, H.X. Growth and optical properties of a-plane AlN and Al rich AlN/AlxGa1–xN quantum wells grown on r-plane sapphire substrates. Phys. Stat. Sol. (c) 2008, 5, 1568–1570. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, W.; Gui, C.; Wen, X.; Peng, Q.; Liu, S. A first-principles study of the mechanical properties of AlN with Raman verification. Comput. Mater. Sci. 2016, 112, 342–346. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Wang, S.; Fan, A.; He, J.; Li, C.; Lu, L.; Rao, L.; Zhuang, Z.; Hu, G.; et al. High quality non-polar a-plane AlN template grown on semi-polar r-plane sapphire substrate by three-step pulsed flow growth method. J. Alloys Compd. 2021, 872, 159706. [Google Scholar] [CrossRef]
- Kuballa, M.; Hayes, J.M.; Shi, Y.; Edgar, J.H.; Prins, A.D.; van Uden, N.W.A.; Dunstan, D.J. Raman scattering studies on single-crystalline bulk AlN: Temperature and pressure dependence of the AlN phonon modes. J. Cryst Growth 2001, 231, 391–396. [Google Scholar] [CrossRef]
- Shibata, T.; Asai, K.; Nakamura, Y.; Tanaka, M.; Kaigawa, K.; Shibata, J.; Sakai, H. AlN epitaxial growth on off-angle R-plane sapphire substrates by MOCVD. J. Cryst Growth 2001, 229, 63–68. [Google Scholar] [CrossRef]
- Wu, J.-J.; Okuura, K.; Fujita, K.; Okumura, K.; Miyake, H.; Hiramatsu, K. Influence of off-cut angle of r-plane sapphire on the crystal quality of nonpolar a-plane AlN by LP-HVPE. J. Cryst Growth 2009, 311, 4473–4477. [Google Scholar] [CrossRef]
- Adachi, M.; Fukuyama, H. Non-Polar a-Plane AlN Growth on Nitrided r-Plane Sapphire by Ga–Al Liquid-Phase Epitaxy. Phys. Stat. Sol (a) 2018, 255, 1700478. [Google Scholar] [CrossRef]
- Okada, N.; Katoa, N.; Satoa, S.; Sumiia, T.; Fujimotoa, N.; Imuraa, M.; Balakrishnana, K.; Iwayaa, M.; Kamiyamaa, S.; Amanoa, H.; et al. Epitaxial lateral overgrowth of a-AlN layer on patterned a-AlN template by HT-MOVPE. J. Cryst Growth 2007, 300, 141–144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Huang, L.; Zhang, J.; Liang, Z.; Zhang, C.; Liu, S.; Luo, W.; Kang, J.; Cao, J.; Li, T.; et al. The In-Plane-Two-Folders Symmetric a-Plane AlN Epitaxy on r-Plane Sapphire Substrate. Symmetry 2022, 14, 573. https://doi.org/10.3390/sym14030573
Zhang F, Huang L, Zhang J, Liang Z, Zhang C, Liu S, Luo W, Kang J, Cao J, Li T, et al. The In-Plane-Two-Folders Symmetric a-Plane AlN Epitaxy on r-Plane Sapphire Substrate. Symmetry. 2022; 14(3):573. https://doi.org/10.3390/sym14030573
Chicago/Turabian StyleZhang, Fabi, Lijie Huang, Jin Zhang, Zhiwen Liang, Chenhui Zhang, Shangfeng Liu, Wei Luo, Junjie Kang, Jiakang Cao, Tai Li, and et al. 2022. "The In-Plane-Two-Folders Symmetric a-Plane AlN Epitaxy on r-Plane Sapphire Substrate" Symmetry 14, no. 3: 573. https://doi.org/10.3390/sym14030573
APA StyleZhang, F., Huang, L., Zhang, J., Liang, Z., Zhang, C., Liu, S., Luo, W., Kang, J., Cao, J., Li, T., Wang, Q., & Yuan, Y. (2022). The In-Plane-Two-Folders Symmetric a-Plane AlN Epitaxy on r-Plane Sapphire Substrate. Symmetry, 14(3), 573. https://doi.org/10.3390/sym14030573