Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution
Abstract
1. Introduction
2. DMPM CV-MDI-QKD Protocol
3. Eavesdropping and Simulations
4. Proof-of-Principle Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Secret Key Rate under BS-Combined SD Attacks
Appendix A.1. The Mutual Information between Alice and Bob
Appendix A.2. The Mutual Information between Eve and Bob
Appendix A.3. Simulations of Secret Key Rate under BS-Combined SD Attacks
Appendix B. Eve’s BS-Combined SD Attack Strategy
Appendix C. Secret Key Rate under Complete IR Attacks
Appendix C.1. The Mutual Information between Alice and Bob
Appendix C.2. The Mutual Information between Eve and Bob
Appendix C.3. The Evaluation of Extra Excess Noise
Appendix C.4. Simulations of Secret Key Rate under Complete IR Attacks
Appendix D. Secret Key Rate of the Phase-Matching Protocol
Appendix E. Frequency Offset Recovery and Phase Drift Compensation
References
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303(R). [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238. [Google Scholar] [CrossRef] [PubMed]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Pirandola, S.; Mancini, S.; Lloyd, S.; Braunstein, S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 2008, 4, 726–730. [Google Scholar] [CrossRef]
- Leverrier, A.; Grangier, P. Unconditional Security Proof of Long-Distance Continuous-Variable Quantum Key Distribution with Discrete Modulation. Phys. Rev. Lett. 2009, 102, 180504, Erratum in Phys. Rev. Lett. 2011, 106, 259902. [Google Scholar] [CrossRef]
- Huang, P.; Huang, J.; Zhang, Z.; Zeng, G. Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A 2018, 97, 042311. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 2000, 85, 1330. [Google Scholar] [CrossRef]
- Filip, R. Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 2008, 77, 022310. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E.; Leverrier, A. Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 2012, 86, 032309. [Google Scholar] [CrossRef]
- Diamanti, E.; Lo, H.-K.; Qi, B.; Yuan, Z. Practical challenges in quantum key distribution. NPJ Quantum Inf. 2016, 2, 16025. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.; Pan, J. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Ma, X.-C.; Sun, S.-H.; Jiang, M.-S.; Liang, L.-M. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 2013, 88, 022339. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 2013, 87, 062313. [Google Scholar] [CrossRef]
- Ma, X.-C.; Sun, S.-H.; Jiang, M.-S.; Liang, L.M. Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 2013, 87, 052309. [Google Scholar] [CrossRef]
- Huang, J.-Z.; Weedbrook, C.; Yin, Z.-Q.; Wang, S.; Li, H.-W.; Chen, W.; Guo, G.-C.; Han, Z.-F. Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 2013, 87, 062329. [Google Scholar] [CrossRef]
- Qin, H.; Kumar, R.; Alléaume, R. Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 2016, 94, 012325. [Google Scholar] [CrossRef]
- Wang, C.; Huang, P.; Huang, D.; Lin, D.; Zeng, G. Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects. Phys. Rev. A 2016, 93, 022315. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, P.; Huang, A.; Peng, J.; Zeng, G. Practical security of continuous-variable quantum key distribution with reduced optical attenuation. Phys. Rev. A 2019, 100, 012313. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, P.; Huang, A.; Peng, J.; Zeng, G. Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack. Opt. Express 2019, 27, 27369. [Google Scholar] [CrossRef] [PubMed]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397–402. [Google Scholar] [CrossRef]
- Ma, X.-C.; Sun, S.-H.; Jiang, M.-S.; Gui, M.; Liang, L.-M. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 042335. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.-C.; Xu, F.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052301. [Google Scholar] [CrossRef]
- Ottaviani, C.; Spedalieri, G.; Braunstein, S.L.; Pirandola, S. Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration. Phys. Rev. A 2015, 91, 022320. [Google Scholar] [CrossRef]
- Papanastasiou, P.; Ottaviani, C.; Pirandola, S. Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 2017, 96, 042332. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhao, Y.; Wang, X.; Yu, S.; Guo, H. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2017, 96, 042334. [Google Scholar] [CrossRef]
- Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S. Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks. Phys. Rev. A 2018, 97, 052327. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, G.; Li, Z.; Guo, H. Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 2018, 98, 012314. [Google Scholar] [CrossRef]
- Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S. Parameter Estimation with Almost No Public Communication for Continuous-Variable Quantum Key Distribution. Phys. Rev. Lett. 2018, 120, 220505. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-X.; Huang, P.; Bai, D.-Y.; Wang, S.-Y.; Bao, W.-S.; Zeng, G.-H. Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 2018, 97, 042329. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Xu, B.; Yu, S.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 2018, 97, 042328. [Google Scholar] [CrossRef]
- Ma, H.-X.; Huang, P.; Bai, D.-Y.; Wang, S.-Y.; Bao, W.-S.; Zeng, G.-H. Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 2019, 99, 022322. [Google Scholar] [CrossRef]
- DiMario, M.T.; Kunz, L.; Banaszek, K.; Becerra, F.E. Optimized communication strategies with binary coherent states over phase noise channels. NPJ Quantum Inf. 2019, 5, 65. [Google Scholar] [CrossRef]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. Reply to ‘Discrete and continuous variables for measurement-device-independent quantum cryptography’. Nat. Photonics 2015, 9, 773–775. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378. [Google Scholar] [CrossRef]
- Xu, F.; Curty, M.; Qi, B.; Qian, L.; Lo, H.-K. Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 772–773. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Lin, D.; Zeng, G. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 2016, 6, 19201. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Chen, Z.; Weedbrook, C.; Zhao, Y.; Wang, X.; Huang, Y.; Xu, C.; Zhang, X.; Wang, Z.; et al. Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 2019, 4, 035006. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Pirandola, S.; Wang, X.; Zhou, C.; Chu, B.; Zhao, Y.; Xu, B.; Yu, S.; Guo, H. Long-Distance Continuous-Variable Quantum Key Distribution over 202.81 km of Fiber. Phys. Rev. Lett. 2020, 125, 010502. [Google Scholar] [CrossRef]
- Wilkinson, K.N.; Papanastasiou, P.; Ottaviani, C.; Gehring, T.; Pirandola, S. Long-distance continuous-variable measurement-device-independent quantum key distribution with postselection. Phys. Rev. Res. 2020, 2, 033424. [Google Scholar] [CrossRef]
- Huang, P.; Fang, J.; Zeng, G. State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 2014, 89, 042330. [Google Scholar] [CrossRef]
- Tsujino, K.; Fukuda, D.; Fujii, G.; Inoue, S.; Fujiwara, M.; Takeoka, M.; Sasaki, M. Quantum Receiver beyond the Standard Quantum Limit of Coherent Optical Communication. Phys. Rev. Lett. 2011, 106, 250503. [Google Scholar] [CrossRef] [PubMed]
- Becerra, F.E.; Fan, J.; Baumgartner, G.; Polyakov, S.V.; Goldhar, J.; Kosloski, J.T.; Migdall, A. M-ary-state phase-shift-keying discrimination below the homodyne limit. Phys. Rev. A 2011, 84, 062324. [Google Scholar] [CrossRef]
- Becerra, F.E.; Fan, J.; Baumgartner, G.; Goldhar, J.; Kosloski, J.T.; Migdall, A. Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nat. Photonics 2013, 7, 147–152. [Google Scholar] [CrossRef]
- Müller, C.R.; Usuga, M.A.; Wittmann, C.; Takeoka, M.; Marquardt, C.; Andersen, U.L.; Leuchs, G. Quadrature phase shift keying coherent state discrimination via a hybrid receiver. New J. Phys. 2012, 14, 083009. [Google Scholar] [CrossRef][Green Version]
- Ferreyrol, F.; Barbieri, M.; Blandino, R.; Fossier, S.; Tualle-Brouri, R.; Grangier, P. Implementation of a Nondeterministic Optical Noiseless Amplifier. Phys. Rev. Lett. 2010, 104, 123603. [Google Scholar] [CrossRef]
- Zavatta, A.; Fiurasek, J.; Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nat. Photonics 2011, 5, 52–56. [Google Scholar] [CrossRef]
- Xiang, G.Y.; Ralph, T.C.; Lund, A.P.; Walk, N.; Pryde, G.J. Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 2010, 4, 316. [Google Scholar] [CrossRef]
- Usuga, M.A.; Muller, C.R.; Wittmann, C.; Marek, P.; Filip, R.; Marquardt, C.; Leuchs, G.; Andersen, U.L. Noise-powered probabilistic concentration of phase information. Nat. Phys. 2010, 6, 767–771. [Google Scholar] [CrossRef]
- Lodewyck, J.; Grangier, P. Tight bound on the coherent-state quantum key distribution with heterodyne detection. Phys. Rev. A 2007, 76, 022332. [Google Scholar] [CrossRef]
- Chen, J.-P.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.; Hu, X.-L.; Guan, J.-Y.; Yu, Z.-W.; Xu, H.; Lin, J.; et al. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 2020, 124, 070501. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-T.; Zeng, P.; Liu, H.; Zou, M.; Wu, W.; Tang, Y.-L.; Sheng, Y.-J.; Xiang, Y.; Zhang, W.; Li, H.; et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 2020, 14, 422–425. [Google Scholar] [CrossRef]
- Wang, T.; Huang, P.; Ma, H.; Wang, S.; Zeng, G. Carrier synchronization for continuous-variable measurement-device-independent quantum key distribution with a real local oscillator. Phys. Rev. A 2021, 104, 022606. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, P.; Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 2004, 92, 047905. [Google Scholar] [CrossRef]
- Lodewyck, J.; Debuisschert, T.; García-Patrón, R.; Tualle-Brouri, R.; Cerf, N.J.; Grangier, P. Experimental Implementation of Non-Gaussian Attacks on a Continuous-Variable Quantum-Key-Distribution System. Phys. Rev. Lett. 2007, 98, 030503. [Google Scholar] [CrossRef]
- Ghorai, S.; Grangier, P.; Diamanti, E.; Leverrier, A. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 2019, 9, 021059. [Google Scholar] [CrossRef]
- Papanastasiou, P.; Pirandola, S. Continuous-variable quantum cryptography with discrete alphabets: Composable security under collective Gaussian attacks. Phys. Rev. Res. 2021, 3, 013047. [Google Scholar] [CrossRef]
- Sabuncu, M.; Filip, R.; Leuchs, G.; Andersen, U.L. Environment-assisted quantum-information correction for continuous variables. Phys. Rev. A 2010, 81, 012325. [Google Scholar] [CrossRef]
- Sabuncu, M.; Mišta, L., Jr.; Fiurášek, J.; Filip, R.; Leuchs, G.; Andersen, U.L. Nonunity gain minimal-disturbance measurement. Phys. Rev. A 2007, 76, 032309. [Google Scholar] [CrossRef]
- Wang, S.; Huang, P.; Wang, T.; Zeng, G. Environment-assisted quantum-information correction for continuous variables. New J. Phys. 2018, 20, 083037. [Google Scholar] [CrossRef]
- Lassen, M.; Madsen, L.S.; Sabuncu, M.; Filip, R.; Andersen, U.L. Experimental demonstration of squeezed-state quantum averaging. Phys. Rev. A 2010, 82, 021801(R). [Google Scholar] [CrossRef]
- Cao, Y.; Yu, S.; Shen, J.; Gu, W.; Ji, Y. Frequency Estimation for Optical Coherent MPSK System without Removing Modulated Data Phase. IEEE Photonics Technol. Lett. 2010, 22, 691–693. [Google Scholar] [CrossRef]
Encoded States | Encoded Bits | Decoded Bits |
---|---|---|
(, ) | ||
(, ) | ||
(, ) | ||
(, ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Wang, T.; Huang, D.; Zeng, G. Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution. Symmetry 2022, 14, 568. https://doi.org/10.3390/sym14030568
Huang P, Wang T, Huang D, Zeng G. Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution. Symmetry. 2022; 14(3):568. https://doi.org/10.3390/sym14030568
Chicago/Turabian StyleHuang, Peng, Tao Wang, Duan Huang, and Guihua Zeng. 2022. "Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution" Symmetry 14, no. 3: 568. https://doi.org/10.3390/sym14030568
APA StyleHuang, P., Wang, T., Huang, D., & Zeng, G. (2022). Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution. Symmetry, 14(3), 568. https://doi.org/10.3390/sym14030568