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Abstract: Continuous-variable measurement-device-independent quantum key distribution (CV-
MDI-QKD) allows remote parties to share information-theoretical secure keys while defending all the
side-channel attacks on measurement devices. However, the secure transmission distance and the
secret key rate are quite limited due to the high untrusted equivalent excess noise in the Gaussian
modulation. More particularly, extremely high-efficiency homodyne detections are required for even
non-zero secure transmission distances, which directly restrict its practical realization. Here, we
propose a CV-MDI-QKD protocol by encoding the key information into matched discrete phases of
two groups of coherent states, which decreases the required detection efficiency for ideally asymmetric
cases, and makes it possible to practically achieve secure key distribution with current low-efficiency
homodyne detections. Besides, a proof-of-principle experiment with a locally generated oscillator
is implemented, which, for the first time, demonstrates the realizability of CV-MDI-QKD using
all fiber-based devices. The discrete-modulated phase-matching method provides an alternative
direction of an applicable quantum key distribution with practical security.

Keywords: continuous-variable; measurement-device-independent; quantum key distribution;
phase-matching

1. Introduction

Continuous-variable quantum key distribution (CV-QKD) [1–5] allows two remote
authenticated users to establish a secure key through untrusted quantum channels, and
authenticated classical channels, by using coherent detection. In particular, the secret
keys are always encoded by Alice on the quadrature values [2,6,7] and the quadrature
choices [8] of the quantized electronmagnetic field of coherent states, while they are distilled
by homodyne or heterodyne detection in Bob’s side and the cooperative postprocessing
procedure. The CV-QKD protocols have inherent features of high transmission capac-
ity, simple hardware implementation, and effective compatibility with already deployed
classical optical communication systems. In addition, the ideal implementation of CV-
QKD can nearly approximate the ultimate limit of the secret key capacity of repeaterless
quantum communication, i.e., the PLOB bound [9]. Since the ideal assumptions in the
theoretical security proof of the CV-QKD protocol may be compromised in realistic imple-
mentations [10–14], eavesdroppers can exploit the security vulnerabilities arising from the
imperfect implementations to capture the key information [15–22].

In order to thoroughly eliminate the practical security vulnerabilities at the measure-
ment side, the Gaussian-modulated coherent-state (GMCS) continuous-variable
measurement-device-independent quantum key distribution (CV-MDI-QKD) protocols are
proposed [23–26]. In these CV-MDI-QKD schemes, two legitimate parties, Alice and Bob,
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are both senders, and an untrusted third party, Charlie, is employed to perform Bell-State
Measurement (BSM) and broadcast the outcomes to help to create the secret correlations
between Alice and Bob. Despite the possibility that Charlie’s station can be fully tampered
with, the legitimate parties can still extract the secure keys under optimal coherent attacks
via insecure quantum channels. Therefore, CV-MDI-QKD protocols can eliminate all side-
channel attacks against detections. In recent years, some breakthroughs have been made in
the theoretical security study of CV-MDI-QKD [27–30].

Unfortunately, the theoretical performance, including the secret key rate and secure
transmission distance of the GMCS CV-MDI-QKD, are quite limited because of the in-
duced high equivalent excess noise [23,25]. In particular, almost perfect detections are
required even for a non-zero secure transmission distance, which restricts its practical
implementations [14,23]. In order to improve the performance and develop the practical
realization, many efforts are currently being dedicated, such as developing the parameter
estimation [31], employing photon subtraction [32], employing non-Gaussian postselec-
tion [33], and employing discrete modulation [34]. Recently, the concept of optimized
communication strategies to enhance the information transfer over a non-Gaussian noisy
channel is also proposed [35]. However, the practical realization remains a challenge is-
sue, especially since extremely high-efficiency homodyne detection is still required even
against individual attacks. So far, the only experimentally confirmed CV-MDI-QKD is the
one based on the free-space transmission and the advanced detection techniques with an
efficiency about 98% [23,36]. Practically, the overall efficiency of fiber-based homodyne
detection is around 60% at telecom wavelengths [37–41]. Therefore, the full implementation
of CV-MDI-QKD with practical lengths of optical fibers has not been reported on in the
literature yet [14]. However, there are efforts to extend the robustness of CV-MDI-QKD by
resorting to postselection, such as in [42].

In this paper, we propose a realizable CV-MDI-QKD protocol by encoding the key
information into some discrete specific phases. When Alice and Bob’s discrete encoding
phases match each other, the correlation between them can be established after Charlie
publicly announces the outcomes of the two homodyne detectors. When comparing the con-
ventional GMCS CV-MDI-QKD schemes, the proposed discrete-modulated phase-matching
(DMPM) CV-MDI-QKD protocol can theoretically achieve secure key distribution with
current low-efficiency detections for the ideally asymmetric case, against a typical and
powerful non-Gaussian individual attack, which could reach the quantum limit of the
discrimination of the discrete encoded quantum states. Moreover, we demonstrate the
realizability of the proposed scheme by performing a proof-of-principle experiment with
a local oscillator (LO) and realistic homodyne detection over standard single-mode fiber
(SMF) spools. The proposed protocol can be applied in an access network for cryptogra-
phy communications.

For simplicity, we start by introducing the DMPM protocol. We then analyze the
security of the proposed scheme under the SD attacks and show the corresponding nu-
merical simulation performances. Finally, the experimental realizability of the proposed
phase-matching scheme under realistic conditions is demonstrated.

2. DMPM CV-MDI-QKD Protocol

The proposed DMPM CV-MDI-QKD protocol, which is illustrated in Figure 1, can be
described as follows.

Step 1. Alice and Bob prepare four coherent states: |αekπi/2〉 with k ∈ {0, 1, 2, 3},
respectively. The states |α〉 and |αeπi〉 with encoded binary values 0 and 1, respectively, are
called X-basis states, while |αeπi/2〉 and |αe3πi/2〉 with encoded binary values of 0 and 1,
respectively, are called P-basis states.

Step 2. According to the binary random values, Alice and Bob choose the correspond-
ing encoded coherent states randomly from X- or P- basis states, respectively. Then they
simultaneously send them to Charlie through two different channels after adjusting for the
intensities by VOAs.
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Step 3. The received two modes (A1 and B1) interfere at a 50:50 BS with two output
modes A′1 and B′1 on Charlie’s side. Then, both the X quadrature of A′1 and the P quadrature
of B′1 are measured by homodyne detections, and the measurement results {XA2 , PB2} are
broadcasted by Charlie.

Step 4. Alice and Bob publicly announce their bases. And according to Charlie’s
measurement results, they collect the corresponding binary RNG values with the same bases
as strings KA and KB, respectively, for the X-basis case {XA2 ∈ R : −δA ≤ XA2 ≤ δA} and
for the P-basis case {PB2 ∈ R : −δB ≤ PB2 ≤ δB}. Besides, they preserve the quadratures
of the prepared inconsistent-basis states {Xp

a , Pp
a } and {Xp

b , Pp
b } as strings Kp

A and Kp
B,

respectively.
Step 5. Alice keeps her binary string KA unchanged, and Bob generates a modified

binary string K′A by flipping the bits in KB when the corresponding encoding states are
P-basis states. After these operations, Alice and Bob share a set of correlated binary raw
keys {KA, K′A}.

Step 6. Alice and Bob perform a parameter estimation based on strings Kp
A, Kp

B and
the corresponding broadcasted results {Xp

A2
, Pp

B2
}, and then further distill a string of secret

keys from {KA, K′A} with information reconciliation and privacy amplification processes
through an authenticated public channel.
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Figure 1. (Color online). The phase-matching CV-MDI-QKD scheme. RNG is random number
generator, QM is quadrature phase-shift keying (QPSK) modulator, VOA is variable optical attenuator,
BS is beam splitter, Hom0 is homodyne detection of measuring the X quadrature, Hom1 is homodyne
detection of measuring the P quadrature, TA(B) and εA(B) are the transmission efficiency and excess
noise of quantum channel between Alice (Bob) and Charlie, respectively.

In the proposed protocol, Alice and Bob prepare, independently, the coherent states,
and the measurements are performed by a totally untrusted third party, Charlie. Here,
Alice and Bob can optimize their amplitudes α and the phase-matching thresholds δA, δB to
maximize the evaluated secret key rate. The phase-matching conditions in step 4 and the
decoding rules in step 5 give four effective secret key generation cases, as shown in Table 1.
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Table 1. Key generation cases for Alice and Bob in DMPM CV-MDI-QKD protocol.

Encoded States Encoded Bits Decoded Bits

(|α〉, |α〉) (0, 0) (0, 0)
(|αeπi〉, |αeπi〉) (1, 1) (1, 1)

(|αeπi/2〉, |αe3πi/2〉) (0, 1) (0, 0)
(|αe3πi/2〉, |αeπi/2〉) (1, 0) (1, 1)

3. Eavesdropping and Simulations

Here, we exemplify the security of the proposed protocol under a typical and powerful
non-Gaussian individual attack, i.e., the beam-splitting (BS) and partial intercept-resend (IR)
attacks, combined with the SD attacks [43], which are constructed by a SD receiver [44–47]
and a heralded noiseless linear amplifier (NLA) [48–51]. Specifically, Eve can apply SD
receivers to directly capture the discrete-encoded secret key with low average error proba-
bility, which has two lower bounds, i.e., the standard quantum limit (SQL) PSQL and the
quantum limit (QL) PQL [44–47], respectively. Here, SQL defines the minimum average
error probability with which the nonorthogonal states can be distinguished by directly
measuring the encoded physical observable coherent states, such as the intensity and
phase, with conventional receivers. The QL is a lower bound which is fundamentally
allowed in quantum mechanics, and it is shown in [43] that for the discrete-modulated
types of CVQKD schemes, the SD attacks are powerful and can be almost close to optimal
levels when combined with the NLA in some specific conditions.In practical scenarios, the
phase-matching thresholds δA, δB should be set according to the parameter estimation of
the two quantum channels. Here, we will consider two typical cases, i.e, the symmetric
case that the transmission efficiencies and excess noises of the two quantum channels are
both T and εc, and the ideally asymmetric case has a transmission efficiency TB = 1 and
excess noises εB = 0, εA = εc, respectively. For the symmetric or asymmetric cases, Alice
and Bob can adjust their VOAs to balance the total transmission efficiencies to optimize
the performance.

For the BS-combined SD attacks, Eve first performs a standard BS attack on the
transmitted signals, then she takes SD attacks on the split photons to directly capture
the secret key information after the announcement of bases and Charlie’s measurement
outcomes. Thus, she can decrease the discrimination error probability by just discriminating
the nonorthogonal coherent states in a binary phase-shift keying (BPSK) format, other than
QPSK. For the symmetric case, Eve will directly discriminate Bob’s states for eavesdropping
when using reverse reconciliation. While for the ideally asymmetric case, Eve needs to
judge Bob’s encoded keys according to Charlie’s measurement outcomes and the results
of the SD attacks on Alice’s states. It should be mentioned that Eve will amplify the split
coherent states with a heralded NLA to further lower the discriminating error probability,
but with a probability of success. In this way, when the legitimate parities set the suitable
intensity of coherent states and phase-matching thresholds, Eve can not obtain the secret
key for both symmetric and ideally asymmetric cases. See the Appendixes A and B for
further details about the calculation of the secret key rate under BS-combined SD attacks.

For the IR attacks, Eve intercepts the transmitted quantum states from both Alice
and Bob’s stations (for symmetric or, ideally, asymmetric cases). In particular, Eve will
control the untrusted party, Charlie, and intercept the transmitted states from Alice and Bob
to perform perfect heterodyne detections. However, she will not resend the reproduced
quantum state here, but will directly resend the forged broadcasted measurement results.
Moreover, she can capture the secret key by using the measurement results of the intercepted
quantum state through the channel between Bob and Charlie. In this way, Eve can obtain
the secret key for both symmetric and, ideally, asymmetric cases. See the Appendix C
for further details about the calculation of the secret key rate under the complete IR
attacks.However, the error discrimination will induce extra excess noise, which could be
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found by the legitimate parties in the parameter estimation. So, she will use the channel
excess noise to cover her eavesdropping to try her best to capture the secret key.

Here, we evaluate the secret key rate under Eve’s specific attack strategy for the
symmetric and, ideally, asymmetric cases. In particular, if the total channel excess noise
εt

c is equal to, or larger than, the total extra excess noise εe
c induced by the complete IR

attacks, Alice and Bob cannot share the secure secret key, since Eve can replace the quantum
channels with noiseless ones to cover the induced extra excess noise and capture all the
secret keys by performing complete IR attacks. When εt

c < εe
c, Eve will perform partial IR

attacks with the probability µ = εt
c

εe
c

and will perform BS-combined SD attacks for other
cases. Here, both the quantum channels are replaced with noiseless ones to cover Eve’s
induced extra excess noise. In this state, the secret key rate can be calculated as

Rs(a) = βIs(a)
AB − Is(a)

BE , (1)

where Is(a)
AB is the classical mutual information between Alice and Bob, Is(a)

BE is the leaked
information to Eve, and β is the reconciliation efficiency. Here, all the superscripts s and a
denote the symmetric and asymmetric cases, respectively. See the Appendix D for further
details about the evaluation of the secret key rate of the proposed protocol under the
non-Gaussian individual attack.

As shown in Figure 2, the proposed CV-MDI-QKD protocol can achieve secure key
distribution with a realistic low-efficiency homodyne detector for the ideally asymmetric
case. The scheme is also sensitive to channel excess noise for both symmetric and, ideally,
asymmetric cases. Moreover, there exists an optimal amplitude α and a threshold of
δA(δB) = κα for the given transmission distance and channel excess noise. Therefore, one
can optimize the amplitude and thresholds to maximize the secret key rate and the secure
transmission distance. It should be mentioned that the secure transmission distances for
both the symmetric and, ideally, asymmetric cases are limited to the access network, since
the direct IR attack utilizes the untrusted property of the measurement party, Charlie.
Moreover, it restricts the required detection efficiency (RDE) (at least larger than 0.5,
in theory) to guarantee a positive secret key rate for both the symmetric and, ideally,
asymmetric cases. However, due to the restriction of the direct access to the encoded states
from Bob’s station in the BS-combined SD attacks, the demand of extremely high-efficiency
homodyne detection is removed for the ideally asymmetric case.

The RDE for the different transmission distances in an ideally asymmetric case are
depicted in Figure 3. The results show that the proposed protocol exhibits the capability
of low RDE, which can be well implemented in realistic conditions. Compared to the
conventional GMCS CV-MDI-QKD protocol [25] under the general individual attacks [52]
with similar parameters (the modulation variance is set under the practical condition
VA = VB = 39 [25]) for the ideally asymmetric case, the RDEs of the proposed scheme
are lower for most of the reachable secure transmission distances when the SD receivers
reach SQL and QL. Specifically, the RDEs are 0.5344 and 0.5342 for the non-zero secure
transmission distance when the SD receivers reach SQL and QL without the consideration
of finite-size effects, respectively. While the RDEs are 0.6722, 0.7837, and 0.8870 for conven-
tional GMCS CV-MDI-QKD protocols under the same type of non-Gaussian individual,
as well as the general individual and collective attacks, respectively. However, for the
symmetric case, the RDEs of the proposed DMPM CV-MDI-QKD are similar to the ones
of conventional GMCS CV-MDI-QKD protocols, which are all approximately 0.7 for the
same parameters.
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4. Proof-of-Principle Experiment

For the realistic implementation of the proposed DMPM CV-MDI-QKD scheme, the
key issues are the interference and random phase drifts between the two remote inde-
pendent lasers. By using frequency-locking and phase-reference techniques, the latest
experiments [53,54] show the feasibilities of this kind of interference and phase compensa-
tion, with even weaker optical signals and a much longer transmission distance. Recently,
an alternative method was proposed and demonstrated experimentally by using carrier
synchronization to compensate the frequency offsets and phase drifts for the similar in-
terference of continuous-variable quantum states with the local-LO implementation [55].
These methods pave the way for the realistic implementation of the proposed scheme.

Inspired by the method proposed in [55], a proof-of-principle experiment for the
ideally asymmetric case of the DMPM CV-MDI-QKD protocol is designed here with the
local-LO. It should be mentioned that the local-LO realization shows the superiority of the
compatibility of the continuous-variable technique with classical optical communication,
which is a promising direction for high-speed, high-integration, and low-cost applications.
The schematic diagram is shown in Figure 4. L1 is a narrow linewidth frequency-stabilized
laser with a center wavelength of 1542.38 nm and a linewidth around 150 kHz, which is
employed to generate both Alice and Bob’s signal states. The generated continuous-wave
light (Wavelength Reference, Clarity-NLL-1542-HP) is split into two beams used as the
carriers from Alice and Bob. The emission power of L1 is controlled at −40 dbm, which
meets the requirements of modulation variance in the theoretical protocol. Two VOAs
are applied to control the intensities of the optical signals, where the signal includes M
consecutive pilot signals and cascaded N consecutive data signals. The pilot signals are
used for the cursory estimation of the frequency offset between the signals and the local-LO,
and some of the data signals are used for further estimations of frequency offset and phase
drifts caused by the fluctuations in the path length.
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Figure 4. (Color online). The schematic diagram of the proof-of-principle experiment of the proposed
phase-matching CV-MDI-QKD scheme. L1, L2: the lasers with stabilized frequencies, BS: beamsplitter,
VOA: variable optical attenuator, SMF: single mode fiber, PC: polarization controller, PM: phase
modulator, Hom: homodyne detector, PD: photoelectric detector, OSC: oscilloscope.

Since the state of polarization (SOP) in the single-mode fiber will change independently
due to the birefringence effect, the SOP cannot be kept the same. After being transmitted
through two 5-km SMF spools with a measured loss of 0.2 dB/km at 1542.38 nm, it is
adjusted by the manual PCs to ensure that the polarization directions of the coherent states
transmitted by Alice and Bob are consistent to interfere by a 50:50 BS at the receiver.Here,
we consider the ideally asymmetric case, where one SMF spool is served as the quantum
channel and the other is used as a the delay line to synchronize the two signals in Bob’s
station, which cannot be intercepted by Eve. The quantum channel between Bob and
Charlie can be seen as the one with TB = 1 and εB = 0. Here, the actual fiber coupling
efficiency and the natural loss of the fiber are all attributed to the attenuation of the quantum
channel, which has been analyzed in the theoretical analysis. Another frequency stabilized
laser L2 is used as the local-LO, which is the same type as L1 and is also divided into two
beams. The optical power of L2 is controlled by a VOA at 5 dbm to meet the shot noise
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detection requirement. Specifically, the power is adjusted while it is monitored in real-time
by a power meter. Each of the LOs are mixed with one interference output followed by
a homodyne detector with a 350-MHz bandwidth to measure the quadratures XA2 and
PB2 , which contain the pilot segments XPA2 , PPB2 , and the data segments XDA2 , PDB2 . An
oscilloscope with a 1 GS/s sampling rate is used to acquire the output results from the two
homodyne detectors.

It should be mentioned that since we use a continuous-wave mode of the quantum
signal, the bandwidth of the whole system mainly depends on the bandwidth of the
homodyne detectors. Here, the cursory frequency offset estimation is firstly performed by
using the acquired outputs from the pilot segments XPA2 . In our experiment, this frequency
offset δ f mainly originates from the phase noise caused by the spontaneous emission in
two lasers, which is related to the linewidth and is around 15 MHz in this experiment.
In order to perform a further estimate of the frequency offset and phase drift, some data
signals should be revealed. To monitor the phase drift in the quantum channel, here, the
interference output power is directly detected by a PD through port 2, which reflects the
phase drift of two optical fields after passing through their respective channels. The output
is sampled as 2 kS/s and the result is shown in Figure 5a, and the average phase drift
rate is 0.6541 rad/ms. By using these values, Alice and Bob will modify their prepared
values {Xa(b), Pa(b)} and {Xp

a(b), Pp
a(b)} with frequency their offset recovery and phase drift

compensation algorithms. A parameter estimation can then be performed, just like in the
original protocol. See the Appendix E for further details about the method of the frequency
offset recovery and phase drift compensation.
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For simplicity, here we don’t perform modulation on the signal state and therefore
random number generators are omitted, but measure the quadratures of the carrier signal,
i.e., the quadratures XA2 and PB2 of pilot segments, and then perform communication
simulations with constructed key data and the measured quadratures and monitored phase
drifts for the same simulation model [55]. The result reflects the phase drift situation in the
actual optical fiber channel and its influence on the theoretical performance. By adopting
the algorithm we proposed in Ref. [55], the phase misalignment problem can be solved,
and the practical realization of the proposed protocol can be guaranteed.

Especially, we evaluate the excess noise for different frame sizes, where the first symbol
is used to compensate the phase of the next four symbols. It can be seen from Figure 5b
that the excess noise increases with the frame sizes. The reason is that when the phase drift
rate is specified, shorter frame can be used to track the phase drift more accurately, which
reducing the excess noise caused by the phase deviation. More detailedly, the frame length
affects the accuracy of phase compensation. Specifically, the designed phase compensation
algorithm for phase drift is to make an overall compensation for each frame. If the length
of a frame is longer, then the symbol phase drift in one frame is not consistent and has a
significant difference, and the residual phase noise will become more prominent after the
compensation. The secret key rates are also shown in Figure 5b, which are evaluated under
the conditions that the length of the SMF spool served as the quantum channel is 2 km
with the channel loss 0.2 dB/km and |α| = 2.5. We can find that the frame size should be
controlled smaller enough to guarantee secure key distribution.

5. Conclusions

We propose a realizable CV-MDI-QKD scheme by encoding the key information into
some discrete and matched specific phases, where the correlation between the legitimate
parities can be established after Charlie publicly announces the results of the homodyne
detections. The eavesdropping analysis is provided under a typical non-Gaussian attack,
which is constructed by an SD receiver and a heralded NLA, when combined with the
BS and partial IR attacks. The simulation results show that the two legitimate parties can
obtain a secure secret key at relatively short distances against the strongest SD attacks, even
with the currently low-efficiency homodyne detections for an ideally asymmetric case. For
the symmetric case, the demand of the high-efficiency homodyne detection remains.

Different from the conventional discrete-modulated CV-MDI-QKD and CVQKD proto-
cols, the encoding of secret keys here is based on the choices of discrete-distributed matched
specific phases, but not directly encoding the secret information on continuous-distributed
quadrature values with further judgments. This encoding way efficiently decreases the
RDE and weakens the effect of the channel’s excess noise on the secret key rate, especially
for the ideally asymmetric case, which is similar to the basis of the encoding for the QKD
scheme [8] where the secret keys are encoded on the quadrature choices, i.e., the discrete-
distributed measurement bases of the Gaussian-modulated coherent states. However, the
discrete modulation and phase-matching encoding lead to a low utilization efficiency and a
low capacity of the quantum channel, thus restricting the secret key rate to a relatively low
level. The proof-of-principle experiment, with a locally-generated LO, demonstrates, for the
first time, that CV-MDI-QKD can be currently well implemented using fiber-based devices
under realistic conditions, which also shows the potentiality to be further integrated with
low-cost classical optical communications.

From the security analysis, we found that the proposed DMPM CV-MDI-QKD protocol
is not able to overcome the PLOB bound. However, for the discrete-variable (DV) PM
QKD protocol proposed in [56], it is shown that the secret key rate can overcome the PLOB
bound. The fundamental reason may be that they have different physical principles of
implementations, which leads to different security analyses frameworks. In the DV case,
the PM QKD protocol executes based on single-photon interference, where the unfolding of
the used Mach–Zehnder interferometer doubles the transmission distance. In the CV case,
the proposed CV-MDI-QKD protocol is based on the first-order interference of the light
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field quadratures of the multiphoton quantum states. The optical structure is the same as
the one in the known Gaussian-modulated CV-MDI-QKD protocol, but it instead uses the
phase-matching method with discrete-encoding. Thus, the performances of this protocol
are also fundamentally restricted by the security framework of CV-QKD, and it is not able
to overcome the PLOB bound. However, the introduction of the phase-matching method
with discrete-encoding relatively increases the correlation between the legitimated parties,
which, to some extent, relieves the required detection efficiency.

Here, the analysed non-Gaussian individual attack against the proposed scheme
are realistic and important attacks for cryptography communication, which has been
thoroughly studied in theory and in experiments [57,58]. Moreover, it is shown in [43]
that for the discrete-modulated four-state CV-QKD schemes, the leaked information under
the SD attacks can be larger than the Holevo bound that is calculated directly with the
estimated parameters from the reconstructed covariance matrix under the linear channel
assumption [7], when combining with the NLA in some specific conditions. Actually,
the asymptotic security of the discrete-modulated CV-QKD against the collective attacks
has only recently been proven [59]. The security has also been proven, in a composable
finite-size way, against the collective Gaussian attacks [60]. In particular, a lower bound of
the secret key rate is given for the four-state protocol, which is also lower than the one while
assuming a linear channel [59]. This proof shows that the SD attacks are powerful and close
to optimal, since the proposed protocol also performs essentially discrete modulations.
Nevertheless, the security should be further developed against more general attacks. Under
realistic conditions, the discrete modulation can achieve a high symbol rate to G Hz, and
the secret key rate with practical security can reach applicable levels for accessing networks
in cryptography communications.

It should be mentioned here that the fiber chromatic dispersion and polarization mode
dispersion will not affect the current theoretical protocols and experiments. It is because the
symbol rate of the discrete-modulation, currently, is not high, less than G Baud. Therefore,
under a single-mode fiber, chromatic dispersion and polarization mode dispersion will not
cause inter-symbol crosstalk. However, if the operation symbol rate exceeds G Baud in
the future, the influence of fiber dispersion needs to be further considered. Moreover, the
protocol can be also applied in the case of the free-space quantum channel [61–63] and the
encoding may be extended to the squeezed states [64] with discrete-modulation.
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Appendix A. Secret Key Rate under BS-Combined SD Attacks

For BS-combined SD attacks, Eve first performs a beam-splitting (BS) attack on the
transmitted signals, i.e., Eve replaces the quantum channel with a perfect lossless and
noiseless one, connecting a beam splitter with the transmission efficiency TA and TB. Then,
she performs SD attacks to directly capture the secret key information. We will first calculate
the mutual information IBS

AB between Alice and Bob, then evaluate the mutual information
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IBS
BE between Eve and Bob, and, finally, we will show the simulations of the secret key rate

under the BS-combined SD attacks.
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Figure A1. (Color online). (a) The description of the SD attack strategy on the phase-matching
CV-MDI-QKD scheme. BS is beam splitter, PIA is phase-insensitive amplifier, Hom0 is homodyne
detection of measuring the X quadrature, Hom1 is homodyne detection of measuring the P quadra-
ture, T is the transmission efficiency of quantum channel between Alice (Bob) and Charlie; (b) the
construction of SD attack, NLA is noiseless linear amplifier.

Appendix A.1. The Mutual Information IBS
AB between Alice and Bob

We first consider the symmetric case, i.e., the transmission efficiencies and excess
noises of the two quantum channels, which are are both T and εc. Here, Eve can directly
discriminate Bob’s states for reverse reconciliation to capture the secret key, or Eve can use
both the results of the SD attack, through Alice and Bob’s channels, to judge the encoded
secret key. However, Eve’s BS-combined SD attacks do not change the parameters of the
quantum channels between Alice and Charlie, and Bob and Charlie. Therefore, Eve’s
operations will not affect the mutual information between Alice and Bob.

Here, the output intensities of Alice and Bob’s states are a set equivalent. After the
beam splitting and amplification operations, the quadratures of the output modes A1 and
B1, in Figure A1, can be expressed as

XA1 =
√

TXA0 +
√

1− TXa
e , (A1)

PA1 =
√

TPA0 +
√

1− TPa
e ,

XB1 =
√

TXB0 +
√

1− TXb
e ,

PB1 =
√

TPB0 +
√

1− TPb
e ,

where Xa
e (Pa

e ) and Xb
e (Pb

e ) are the equivalent extra input quadratures of the thermal states
controlled by Eve, and they satisfy 〈(Xa

e )
2〉 = 〈(Pa

e )
2〉 = 〈(Xb

e )
2〉 = 〈(Pb

e )
2〉 = 1 + T

1−T εc in
the shot noise unit (SNU). For a noisy channel, Eve can use a beam splitter and a cascaded
phase-insensitive amplifier (PIA) with total transmission efficiencies T = T1g′ to split the
photons as much as possible, thus reducing the error probability of her SD attacks. Here,
T1 is the transmission efficiency of the renewed beam splitter and g′ > 1 is the gain of the
PIA (shown in Figure A8). This restricts the largest quantity of the mean photon number
captured by Eve for the SD attacks to 2−2T+Tεc

2+Tεc
|α|2 (see Appendix B for details).
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After the interference, the quadratures of the output modes A′1 and B′1 in Charlie’s
side are given by

XA′1
=

1√
2
[
√

T(XA0 − XB0) +
√

1− T(Xa
e − Xb

e )], (A2)

PA′1
=

1√
2
[
√

T(PA0 − PB0) +
√

1− T(Pa
e − Pb

e )],

XB′1
=

1√
2
[
√

T(XA0 + XB0) +
√

1− T(Xa
e + Xb

e )],

PB′1
=

1√
2
[
√

T(PA0 + PB0) +
√

1− T(Pa
e + Pb

e )].

Then, we can get

XA2 =
1√
2
[
√

ηT(XA0 − XB0) +
√

η(1− T)(Xa
e − Xb

e )] +
√

1− ηXa
v + Xel , (A3)

PB2 =
1√
2
[
√

ηT(PA0 + PB0) +
√

η(1− T)(Pa
e + Pb

e )] +
√

1− ηPa
v + Pel ,

where Xa
v(Pb

v ) and Xel(Pel) are the quadratures of the vacuum states and the electronic
noise induced from the imperfect homodyne detection, respectively, and they satisfy
〈(Xa

v)
2〉 = 〈(Pb

v )
2〉 = 1, and 〈(Xel)

2〉 = 〈(Pel)
2〉 = νel in the SNU, respectively. Moreover,

we have

XA0 = Xa + Xa
v,e, PA0 = Pa + Pa

v,e, (A4)

XB0 = Xb + Xb
v,e, PB0 = Pb + Pb

v,e,

where Xa(b), Pa(b) are the fixed values from the set {α, 0,−α}, where α is assumed to be a

real and positive value, and Xa(b)
v,e , Pa(b)

v,e are the quadratures of the vacuum states induced
in the encoding step.

According to Alice and Bob’s public basis announcements, they will discard one half
of the measurement results with inconsistent bases. For the other half of the outcomes with
consistent bases, Xa = Xb for the X-basis case and Pa = −Pb for the P-basis case, respec-
tively, Alice and Bob can perform correct and effective decodings after basis reconciliation.
For these two cases, one can always find that

XA2 = Xc
A2

(A5)

=
1√
2
[
√

ηT(Xa
v,e − Xb

v,e) +
√

η(1− T)(Xa
e − Xb

e )] +
√

1− ηXa
v + Xel ,

PB2 = Pc
B2

=
1√
2
[
√

ηT(Pa
v,e + Pb

v,e) +
√

η(1− T)(Pa
e + Pb

e )] +
√

1− ηPa
v + Pel ,

and they follow the normal distribution as

Xc
A2

, Pc
B2
∼ N (0, 1 + ηTεc + νel). (A6)

Because of the symmetry of the two bases, we assume δA = δB, and the correct and effective
decoding probability can then be calculated as

Pc
BS = Pr(−δA < Xc

A2
< δA) = Pr(−δB < Pc

B2
< δB) (A7)

= Pr(−κα < Xc
A2

< κα) = Pr(−κα < Pc
B2

< κα)

= erf(
κα√

2(1 + ηTεc + νel)
),
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where κ ∈ R is the decoding threshold, and erf(x) = 2√
π

∫ x
0 e−t2

dt.
While Xa = −Xb for the X-basis case and Pa = Pb for the P-basis case, respectively,

Alice and Bob will perform incorrect but effective decodings. For these two cases, one can
find that

XA2 = Xw
A2

(A8)

=
1√
2
[
√

ηT(2Xa + Xa
v,e − Xb

v,e) +
√

η(1− T)(Xa
e − Xb

e )] +
√

1− ηXa
v + Xel ,

PB2 = Pw
B2

=
1√
2
[
√

ηT(2Pa + Pa
v,e + Pb

v,e) +
√

η(1− T)(Pa
e + Pb

e )] +
√

1− ηPa
v + Pel ,

and they follow the normal distribution as

Xw
A2
∼ N (

√
2ηTXa, 1 + ηTεc + νel), (A9)

Pw
B2
∼ N (

√
2ηTPa, 1 + ηTεc + νel),

where Xa(Pa) values α or −α have the same probability. Similarly, we assume δA = δB, and
the incorrect but effective decoding probability can be calculated as

Pw
BS = Pr(−δA < Xw

A2
< δA) (A10)

= Pr(−δB < Pw
B2

< δB)

= Pr(−κα < Xw
A2

< κα) = Pr(−κα < Pw
B2

< κα)

=
1
2
[erf(

√
2ηTα + κα√

2(1 + ηTεc + νel)
)− erf(

√
2ηTα− κα√

2(1 + ηTεc + νel)
)].

Therefore, the key distribution channel between Alice and Bob can be seen as a binary
symmetric channel (BSC) with utilization efficiency PBS

AB = 1
4 (Pc

BS + Pw
BS), and quantum bit

error rate (QBER) PBS
AB,e = Pw

BS/(4PBS
AB). Thus, the mutual information between Alice and

Bob under the BS-combined SD attack is given by

IBS
AB = PBS

AB[1−H(PBS
AB,e)]. (A11)

While, for the asymmetric case (the total channel excess noise of two channels is
the same as 2εc), Bob will adjust the VOA in his station, where the attenuation efficiency
will be equivalent to the quantum channel between Alice and Charlie, such that the
decoding procedures in Equations (A5) and (A8) can be guaranteed. Therefore, the mutual
information between Alice and Bob under the BS-combined SD attack for the asymmetric
case can be also given by the Equation (A11).

Appendix A.2. The Mutual Information IBS
BE between Eve and Bob

Now, we turn to Eve’s information from the BS-combined SD attack. We first consider
the symmetric case. The detailed construction of the SD attack is shown in Figure A1b.
Here, Eve can use both the results of the SD attack through Alice and Bob’s channels
to judge the encoded secret key. However, Eve just needs to discriminate Bob’s states
for reverse reconciliation. Since the legitimate parties will discard the ineffective results
according to Charlie’s measurement results, Eve will also optimize her eavesdropping to
capture the secret key according to Charlie’s measurement results.

Specifically, she will reserve the split photons in the beam splitting stage and will
perform the SD attack after the announcement of the bases. Thus, she can decrease the
discrimination error probability by just discriminating the nonorthogonal coherent states
in a BPSK format other than a QPSK one. Moreover, Eve will amplify the split coherent
states with a heralded NLA to further lower the discriminating error probability with a
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success probability Ps 6 1−exp (−|γ|2)
1−exp (−|gγ|2) , where g > 1 is the gain of the NLA and γ is the

input amplitude of the coherent states. Moreover, according to Alice and Bob’s public basis
announcements, Eve will discard one half of the split states with the inconsistent bases.
For the other half of the coherent states with consistent bases, we also consider the two
cases, i.e., Xa = Xb and Xa = −Xb for the X-basis case and Pa = −Pb and Pa = Pb for
the P-basis case. Because of symmetric encoding, we just consider the X-basis case in the
following equations.

We suppose that when Eve fails in the implementation of the NLA, she will randomly
choose one of the two coherent states, which will induce a 1

2 (1− Ps) error probability in the
decoding. Moreover, if Eve performs an incorrect discrimination of a coherent state sent
from Alice or Bob’s stations after the successful implementation of the NLA, it will induce a
PsPb

SD error probability in decoding, where Pb
SD is the average error probability of Eve’s SD

receiver, which has two lower bounds, i.e., the standard quantum limit (SQL) PSQL and the
quantum limit (QL) PQL [44–47], respectively. In particular, the SQL defines the minimum
average error probability with which the nonorthogonal states can be distinguished by
directly measuring the encoded physical observable coherent states, such as the intensity
and phase, with conventional receivers. The QL is a lower bound which is fundamentally
allowed in quantum mechanics. The SQL for the discrimination of the amplified BPSK
coherent states is given by [44]

Pg,b
SQL =

1
2
[1− erf(

√
2gγ)], (A12)

where gγ is the amplified amplitude. The QL for the amplified signal in the BPSK format is
expressed as

Pg,b
QL =

1
2
[1−

√
1− exp (−4|gγ|2)]. (A13)

It should be mentioned that Eve will also discard the ineffective results according to
Charlie’s measurement results. Here, we consider the first case, i.e., Xa = Xb (Pa = −Pb),
and Alice and Bob perform correct and effective decodings with the probability Pc

BS. There
are two scenarios when referring to the SD attack results on Bob’s states. Firstly, considering
the successful probability of the implementation of the NLA and when Eve performs the
incorrect discrimination of the state sent from Bob’s station, the overall incorrect decoding
probability will be

P1,1
BS =

1
2
− 1

2
Ps + PsPb

SD. (A14)

Secondly, when Eve correctly discriminates the state sent from Bob’s station, she will then
capture the distributed secret information. Considering the successful probability of the
implementation of the NLA, the overall probability of the information leakage will be

P1,2
BS =

1
2
+

1
2

Ps − PsPb
SD. (A15)

Now, we consider the second case, i.e., Xa = −Xb (Pa = Pb), where Alice and Bob
perform effective decodings with the probability Pw

BS, which also includes two scenarios.
Firstly, considering the successful probability of the implementation of the NLA, and
when Eve performs the incorrect discrimination of the state sent from Bob’s station, the
overall incorrect decoding probability will be P2,1

BS = P1,1
BS . Secondly, when Eve correctly

discriminates the state sent from Bob’s station, she will capture the secret key. Considering
the successful probability of the implementation of the NLA, the overall probability of
information leakage will be P2,2

BS = P1,2
BS .

Therefore, the key distribution channel between Bob and Eve, for the symmetric
case, can also be seen as a BSC with a utilization efficiency of PBS,s

BE = 1
4 (Pc

BS ∑2
i=1 P1,i

BS +

Pw
BS ∑2

i=1 P2,i
BS) = 1

4 (Pw
BS + Pc

BS), and QBER is PBS,s
BE,e = P1,1

BS (Pw
BS + Pc

BS)/(Pw
BS + Pc

BS) = P1,1
BS .
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Thus, the mutual information between Bob and Eve, under the BS-combined SD attack, is
given by

IBS,s
BE = PBS,s

BE [1−H(PBS,s
BE,e)]. (A16)

For the ideally asymmetric case, i.e, the transmission efficiency between Bob and
Charlie is TB = 1, and the excess noise is εB = 0. Moreover, we suppose that εA is the same
as the total channel excess noises of both channels in the symmetric case, i.e., εA = 2εc. In
this case, Eve can not directly capture the secret key information by splitting the photons
from the quantum channel between Bob and Charlie. The feasible way is that Eve performs
SD attacks on the split photons from the quantum channel between Alice and Charlie to
guess the secret key encoded in Bob’s states. In particular, Eve will use the same decoding
criterion as the legitimate parities in the protocol to judge Bob’s encoding states. Eve will
also discard one half of the split states with inconsistent bases. For the other half of coherent
states with consistent bases, we also consider the two cases, i.e., Xa = Xb and Xa = −Xb
for the X-basis case and Pa = −Pb and Pa = Pb for the P-basis case. Because of symmetric
encoding, we just consider the X-basis case in the following equations.

We also suppose that when Eve fails in the implementation of the NLA, she will
randomly choose one of the two coherent states, which will induce a 1

2 (1 − Ps) error
probability in decoding. Moreover, if Eve performs an incorrect discrimination of a coherent
state sent from Alice or Bob’s stations after the successful implementation of the NLA, it
will induce a PsPb

SD error probability in decoding. It should be mentioned that Eve will also
discard the ineffective results according to Charlie’s measurement outcomes.

Here, we consider the first case, i.e., Xa = Xb (Pa = −Pb), and Alice and Bob perform
the correct and effective decodings with the probability Pc

BS. Since Eve can not split photons
from the channel between Bob and Charlie to directly capture the secret key information,
she will use the result of the SD attack, through Alice’s channels and Charlie’s announced
outcomes, to guess Bob’s encoded secret key. Since the legitimate parties will discard the
ineffective results according to Charlie’s measurement outcomes, Eve will also optimize
her eavesdropping to capture the secret key according to Charlie’s measurement results.
There are two scenarios when referring to the SD attack results on Alice’s states. Firstly,
considering the successful probability of the implementation of the NLA and when Eve
performs the incorrect discrimination of the state sent from Alice’s station, the overall
incorrect decoding probability will be P1,1

BS . In this case, Eve will also get the incorrect
encoded key on Bob’s state. Secondly, when Eve correctly discriminates the state sent
from Alice’s station, she will then capture Alice’s encoded secret information and also
correctly guess the encoded key in Bob’s side. Considering the successful probability of the
implementation of the NLA, the overall probability of information leakage will be P1,2

BS .
Now, we consider the second case, i.e., Xa = −Xb (Pa = Pb). Alice and Bob perform

effective decodings with the probability Pw
BS, which also includes two scenarios. Firstly, the

successful probability of the implementation of the NLA when Eve performs the incorrect
discrimination of the state sent from Alice’s station is considered.However, Eve’s incorrect
decoding will lead to a correct judgment of Bob’s encoded key. Therefore, the overall correct
decoding probability will be P2,1

BS = P1,1
BS . Secondly, when Eve correctly discriminates the

state sent from Alice’s station, she will capture the encoded secret key but will incorrectly
guess the secret key encoded on Bob’s state. Considering the successful probability of the
implementation of the NLA, the overall incorrect decoding probability will be P2,2

BS = P1,2
BS .

Thus, the key distribution channel between Bob and Eve for the ideally asymmetric
case can also be seen as a BSC with utilization efficiency PBS,a

BE = PBS,s
BE = 1

4 (Pw
BS + Pc

BS),
and QBER is PBS,a

BE,e = (P1,1
BS Pc

BS + P1,2
BS Pw

BS)/(Pw
BS + Pc

BS) = [Pw
BS + (Pc

BS − Pw
BS)PBS,s

BE,e]/(4PBS
AB).

Therefore, the mutual information between Bob and Eve under the BS-combined SD attack
is given by

IBS,a
BE = PBS,a

BE [1−H(PBS,a
BE,e)]. (A17)

When the asymmetric case is not ideal, i.e., for the cases where the transmission
efficiencies TA 6= TB < 1 and/or excess noise εA 6= εB 6= 0, Eve will choose the optimal
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strategy to capture the secret key information. In particular, she will compare the secret
key information captured from the channel between Alice and Charlie by using the BS-
combined SD attack with the one captured directly from the channel between Bob and
Charlie, and will then choose the way to maximize the leaked secret key information.
Therefore, the mutual information between Bob and Eve, in this case, will be changed to

IBS,a
BE → max{IBS,s

BE , IBS,a
BE }. (A18)

Appendix A.3. Simulations of Secret Key Rate under BS-Combined SD Attacks

The secret key rate of the proposed protocol under the BS-combined SD attacks can be
calculated as

RBS = βIBS
AB − IBS,s(a)

BE , (A19)

where IBS
AB is the classical mutual information between Alice and Bob for both symmet-

ric and asymmetric cases, IBS,s(a)
BE is the leaked information to Eve for the symmetric or

asymmetric cases, and β is the reconciliation efficiency.
We first consider the symmetric case. We find that g = 1 is optimal for Eve, which

corresponds to the lowest estimation of the secret key rate for the BS-combined SD attacks.
The secret key rates, as a function of the transmission distance against the BS-combined
SD attacks for different channel excess noises are shown in Figure A2. It can be seen that
the proposed CV-MDI-QKD protocol is sensitive to the channel’s excess noise. Specifically,
there exists an optimal amplitude α for the given transmission distance, which is shown in
Figure A3. We also explore the dependence of the phase-matching threshold δA(δB) = κα
on the secret key rate. Figure A4 shows that the threshold does not obviously affect the
secure transmission distance, but rather the quantity of the secret key rate. Therefore, one
can appropriately choose a relatively large threshold to increase the secret key rate without
decreasing the transmission distance.
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Figure A2. (Color online). The secret key rates for different channel excess noises against the BS-
combined SD attacks for the symmetric case when the SD receivers reach SQL (thick curves) and
QL (thin curves), respectively. Solid, dashed, dotted, and dash-dotted curves represent the channel
excess noise εc = 0.02, 0.05, 0.08, and 0.1, respectively. The other parameters are set as α = 3.3, η = 0.6,
νel = 0.04, β = 0.98, g = 1, κ = 0.01

√
2ηT.
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Figure A3. (Color online). The secret key rates as a function of amplitude α against the BS-combined
SD attacks with transmission distance of 3 km of the standard single mode fiber for the symmetric
case, when the SD receivers reach QL and SQL, respectively. The other parameters are set as εc = 0.03,
η = 0.6, νel = 0.04, β = 0.98, g = 1, κ = 0.01

√
2ηT.
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Figure A4. (Color online). The secret key rates for different κ against the BS-combined SD attacks for
the symmetric case when the SD receivers reach QL and SQL, respectively. The solid, dashed, dotted,
and dash-dotted curves represent κ = 0.1

√
2ηT, 0.01

√
2ηT, 0.005

√
2ηT and 0.001

√
2ηT, respectively.

The other parameters are set as εc = 0.03, η = 0.6, νel = 0.04, β = 0.98, g = 1, α = 3.3.

For the ideally asymmetric case, we also find that g = 1 is optimal for Eve. The secret
key rates, as a function of the transmission distance against the BS-combined SD attacks for
different channel excess noises, in this case, are shown in Figure A5. It can be seen that the
proposed CV-MDI-QKD protocol is quite insensitive to channel excess noises (the curves
are overlapping with each other for different excess noises). Specifically, there exists an
optimal amplitude α for a given transmission distance, which is shown in Figure A6. We
also explore the dependence of the phase-matching threshold δA(δB) = κα on the secret key
rate. Figure A7 shows that the threshold does not obviously affect the secure transmission
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distance, but rather the quantity of the secret key rate. Therefore, one can appropriately
choose a relatively large threshold to increase the secret key rate, without decreasing the
transmission distance.
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Figure A5. (Color online). The secret key rates for different channel excess noises against the BS-
combined SD attacks for the ideally asymmetric case when the SD receivers reach QL (thick curves)
and SQL (thin curves), respectively. Solid, dashed, dotted, and dash-dotted curves represent the
channel excess noise εc = 0.02, 0.05, 0.08, and 0.1, respectively. The other parameters are set as α = 0.8,
η = 0.6, νel = 0.04, β = 0.98, g = 1, κ =

√
2ηT.
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Figure A6. (Color online). The secret key rates as a function of amplitude α against the BS-combined
SD attacks with transmission distance of 50 km of standard single mode fiber for the ideally asym-
metric case. The black dashed and red solid curves denote the secret key rates when the SD receivers
reach QL and SQL, respectively. The other parameters are set as εc = 0.03, η = 0.6, νel = 0.04,
β = 0.98, g = 1, κ =

√
2ηT.
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We find that the legitimate parties can obtain the secure secret key for both symmetric
and, ideally, asymmetric cases, if they only consider Eve performing the BS-combined SD
attacks. Moreover, it shows that the BS-combined SD attacks are stronger for the symmetric
case than the ideally asymmetric case.
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Figure A7. (Color online). The secret key rates for different κ against the BS-combined SD attacks for
the ideally asymmetric case when the SD receivers reach QL and SQL, respectively. The solid, dashed,
dotted, and dash-dotted curves represent κ = 2

√
2ηT,

√
2ηT, 0.1

√
2ηT and 0.01

√
2ηT, respectively.

The other parameters are set as εc = 0.03, η = 0.6, νel = 0.04, β = 0.98, g = 1, α = 0.8.

Appendix B. Eve’s BS-Combined SD Attack Strategy

The equivalent beam-splitting operation with the transmission efficiency T for Eve’s
SD attack in Figure A1 are realized by a beam splitter with transmission efficiencies T1
and a cascaded PIA with the gain of amplification g′ > 1. We will show below that this
operation can be equivalently realized by a virtual beam splitter with the transmission
efficiency T = T1g′ to fully consider the ability of Eve’s SD attacks.
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(b)Figure A8. (Color online). Equivalent realization of beam splitting and amplification operation for
Eve’s optimized SD attack.
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The quadratures of the output modes A′0 and B′0 in Figure A8 can be expressed as

X′A0
=

√
T1XA0 +

√
1− T1Xa

v′ , (A20)

P′A0
=

√
T1PA0 +

√
1− T1Pa

v′ ,

X′B0
=

√
T1XB0 +

√
1− T1Xb

v′ ,

P′B0
=

√
T1PB0 +

√
1− T1Pb

v′ ,

where Xa
v′(Pa

v′) and Xb
v′(Pb

v′) are the quadratures of the induced vacuum states. The split
quantum state for the output mode As(Bs) will be a coherent state with the mean photon
number (1− T1)α

2. Thus, Eve can directly discriminate between the nonorthogonal coher-
ent states and can capture the secret information with an extremely low error rate, which
can be below the SQL and can reach the Helstrom bound (QL). The value of T1 is directly
related to the performance of Eve’s SD attacks.

After transmission through the amplifier, the quadratures of the output modes A1 and
B1 are given by

XA1 =
√

g′T1XA0 +
√

1− g′T1Xa
e , (A21)

PA1 =
√

g′T1PA0 +
√

1− g′T1Pa
e ,

XB1 =
√

g′T1XA0 +
√

1− g′T1Xb
e ,

PB1 =
√

g′T1PA0 +
√

1− g′T1Pb
e ,

where T1 = T/g′, and

Xa
e =

1√
1− g′T1

(
√

g′(1− T1)Xa
v′ +

√
g′ − 1Xa

I ), (A22)

Pa
e =

1√
1− g′T1

(
√

g′(1− T1)Pa
v′ +

√
g′ − 1Pa

I ),

Xb
e =

1√
1− g′T1

(
√

g′(1− T1)Xb
v′ +

√
g′ − 1Xb

I ),

Pb
e =

1√
1− g′T1

(
√

g′(1− T1)Pb
v′ +

√
g′ − 1Pb

I ),

are the equivalent extra input quadratures of the thermal states controlled by Eve in
Figure A1a, and satisfy 〈(Xa

e )
2〉 = 〈(Pa

e )
2〉 = 〈(Xb

e )
2〉 = 〈(Pb

e )
2〉 = 1 + T

1−T εc in the SNU.

Moreover, (Xa(b)
I , Pa(b)

I ) are the quadratures of the idler mode for Eve’s PIA. When the idler
mode is ideally in a vacuum state, one can get

1
1− T

[(g′ − T) + g′ − 1] = 1 +
T

1− T
εc. (A23)

Thus, we can get a lower bound of T1 = T/g′ as 2T
2+Tεc

. It should be mentioned that the
channel excess noise εc is attributed to the induced excess noises by the beams splitting
and amplification operations.

Appendix C. Secret Key Rate under Complete IR Attacks

For CV-MDI-QKD, the measurement procedure is performed by a third untrusted
party. Thus, Eve can directly intercept the quantum signals without resending the real
quantum states, but can just broadcast the measurement outcomes without introducing
extra excess noises in state reproduction procedure.
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Figure A9. (Color online). The description of the IR attack on the symmetric case of DMPM CV-MDI-
QKD scheme. BS is the 50:50 beam splitter, Hom is homodyne detection of measuring the X or P
quadrature with quantum efficiency ηe = 1. These components are all controlled by Eve without
reproduction of quantum states. Eve will guess Bob’s encoding state to capture the secret key.

For the symmetric or, ideally, asymmetric cases, the complete IR attacks are some
of the optimal attacks on the proposed protocol, which can be depicted in Figure A9.
While Charlie is untrusted, Eve can control Charlie’s station. After Alice and Bob send
the quantum states, Eve will simultaneously perform two standard IR attacks on the two
quantum channels between Alice and Charlie, and Bob and Charlie. In particular, Eve
will replace the quantum channels between Alice and Charlie, and Bob and Charlie, and
the two heterodyne detections, with two perfect channels and two 50:50 beam splitters
connecting two perfect heterodyne detections, i.e., ηe = 1, respectively. The outputs of
Charlie’s two heterodyne detections can be expressed as

XA1 =
1√
2
(Xa + Xa

v,e − Xa
v), (A24)

PA1 =
1√
2
(Pa + Pa

v,e − Pa
v ),

XB1 =
1√
2
(Xb + Xb

v,e + Xb
v),

PB1 =
1√
2
(Pb + Pb

v,e + Pb
v ).

Charlie will use the above outcomes to forge the broadcasted results XA2 , PB2 as

XA2 = XA1 − XB1 (A25)

=
1√
2
[
√

ηT(Xa − Xb) +
√

ηT(Xa
v,e − Xb

v,e)−
√

ηT(Xa
v + Xb

v)],

PB2 = PA1 + PB1

=
1√
2
[
√

ηT(Pa + Pb) +
√

ηT(Pa
v,e + Pb

v,e)−
√

ηT(Pa
v − Pb

v )].

Alice and Bob cannot judge whether these values are forged or are practical measurement
results. Here, Eve can capture the secret key encoded in Bob’s quantum state by using the
measurement results after Alice and Bob’s announcements of the bases, when Xa = Xb is
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for the X-basis and Pa = −Pb is for the P-basis case, respectively, Alice and Bob can perform
correct and effective decodings after basis reconciliation. For these two cases, one can get

XA2 = Xc
A2,IR =

1√
2
[
√

ηT(Xa
v,e − Xb

v,e)−
√

ηT(Xa
v + Xb

v)], (A26)

PB2 = Pc
A2,IR =

1√
2
[
√

ηT(Pa
v,e + Pb

v,e)−
√

ηT(Pa
v − Pb

v )],

and they follow the normal distribution as

Xc
A2,IR, Pc

B2,IR ∼ N (0, 2ηT). (A27)

Because of the symmetry of the two bases, we assume δA = δB, and the correct and effective
decoding probability can then be calculated as

Pc
IR = erf(

κα√
4ηT

), (A28)

where κ ∈ R is the decoding threshold.
While Xa = −Xb is for the X-basis case and Pa = Pb is for the P-basis case, respectively,

Alice and Bob will perform incorrect but effective decodings. For these two cases, one can
find that

XA2 = Xw
A2,IR =

1√
2
[
√

ηT(2Xa + Xa
v,e − Xb

v,e)−
√

ηT(Xa
v + Xb

v)], (A29)

PB2 = Pw
B2,IR =

1√
2
[
√

ηT(2Pa + Pa
v,e − Pb

v,e)−
√

ηT(Pa
v + Pb

v )],

and they follow the normal distribution as

Xw
A2,IR ∼ N (

√
2ηTXa, 2ηT), (A30)

Pw
B2,IR ∼ N (

√
2ηTPa, 2ηT),

where Xa(Pa) values α or −α with the same probability. Similarly, we assume δA = δB, and
the incorrect but effective decoding probability can be calculated as

Pw
IR =

1
2
[erf(

√
2ηTα + κα√

4ηT
)− erf(

√
2ηTα− κα√

4ηT
)]. (A31)

We will first calculate the mutual information I IR
AB between Alice and Bob, and the

mutual information I IR
BE between Eve and Bob. Then, we will evaluate the induced extra

excess noise under Eve’s IR attacks, which will be used for the further consideration of
Eve’s optimal attack strategy. Finally, we will show the simulations of the secret key rate
under the complete IR attacks.

Appendix C.1. The Mutual Information between Alice and Bob

It should be noted that whenever Eve’s judgments on Bob’s encoded states in the IR
attacks are correct or incorrect, Alice and Bob will discard one half of the measurement
results with inconsistent bases according to their public basis announcements. For the
other half of the outcomes with consistent bases, we consider two cases, Xa = Xb and
Xa = −Xb for the X-basis case and Pa = −Pb and Pa = Pb for the P-basis case. We also need
to consider the X-basis case here, because of the symmetric encoding. After Eve’s IR attacks,
the measurement outcomes in Charlie’s side can also be expressed as Equation (A25).

We consider the first case, i.e., Xa = Xb (Pa = −Pb). The effective detections for this
case will be regarded as correct decodings after Alice and Bob’s announcements of bases
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with the probability Pc
IR. For Xa = −Xb (Pa = Pb), the effective detections for inconsistent

bases will be regarded as incorrect decodings with the probability Pw
IR. Thus, the key

distribution channel between Alice and Bob under Eve’s IR attacks can be seen as a BSC
with utilization efficiency PIR

AB = 1
4 (Pc

IR + Pw
IR), and QBER PIR

AB,e = Pw
IR/(4PIR

AB). Therefore,
the mutual information between Alice and Bob under the BS-combined SD attack for the
symmetric case is given by

IIR
AB = PIR

AB[1−H(PIR
AB,e)]. (A32)

Appendix C.2. The Mutual Information between Eve and Bob

Now, we turn to Eve’s information from the IR attack. According to Alice and Bob’s
public basis announcements, Eve will discard one half of the intercepted states with the
inconsistent bases. Here, the total probability of the efficient decoding will be PIR

BE = PIR
AB.

Since Eve will not reproduce the quantum states intercepted from Alice and Bob, she will
instead perform the discrimination operation with the measurement result from Bob to
capture the encoded secret key. In this case, whether Alice and Bob send the matched states,
i.e., Xa = Xb and Pa = −Pb or not, i.e, Xa = −Xb and Pa = Pb, the QBER can be bound by
the SQL for the discrimination of the BPSK coherent states with the amplitude α.

Therefore, the key distribution channel between Bob and Eve can be seen as a BSC with
a utilization efficiency of PIR

BE = PIR
AB, and QBER is PIR

BE,e = PIR
BE,e = Pg,b

SQL with g = 1. Here,
g = 1 corresponds to the unamplified BPSK signal, which is optimal when considering the
successful probability of the implementation of the NLA. Thus, the mutual information
between Alice and Bob, under the SD attack, is given by

IIR
BE = PIR

BE[1−H(PIR
BE,e)]. (A33)

Appendix C.3. The Evaluation of Extra Excess Noise

As shown in the protocol procedure, the excess noise will be evaluated with the broad-
casted measurement results {XA2 , PB2} and the quadratures of the prepared inconsistent-
basis states {Xp

a , Pp
a } and {Xp

b , Pp
b }. In particular, Alice and Bob will first get the prepared

values as
Xp = Xp

a − Xp
b , Pp = Pp

a + Pp
b . (A34)

We suppose that the quadrature of the prepared states Xp(Pp) and the measurement results
XA2(PB2) are linked through the following relation

y = tx + z, (A35)

which is a normal linear model. Moreover, t =
√

ηT ∈ R is the total transmission efficiency,
z follows a centered normal distribution with an unknown variance σ2 = 1 + ηTεc + νel
for the phase-matched outcomes, and εc is the average channel excess noise for the two
quantum channels between Alice and Charlie, and Bob and Charlie. For the ineffective
decoding cases, the centers will shift. When the measurement outcomes meet the phase-
matching condition, there may be error decodings. Because of the symmetric encoding, we
need to consider the X-basis case here.

For this normal linear model, the known maximum-likelihood estimator can be ex-
pressed as

t̂ = ∑m
i=1 xiyi

∑m
i=1 x2

i
, σ̂2 =

1
m

m

∑
i=1

(yi − t̂xi)
2. (A36)

Therefore, in the parameter estimation, if no IR attacks exist, z will follow a centered
normal distribution with the variance σ2 = 1 + ηTεc + νel . If Eve performs complete IR
attacks, according to the output in Equation (A25), the induced total excess noise in the two
quantum channels will change to εe

c =
2ηT−νel−1

ηT .
Since the evaluated excess noise reflects the total one from both quantum channels,

Eve will try her best to lower the total induced extra excess noise. One simple way is to
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replace the channels with the noiseless ones. Therefore, in a practical security analysis,
considering Eve’s strongest attacks, the legitimate parties will attribute the evaluated total
excess noise to Eve’s eavesdropping from the attacked quantum channels.

Appendix C.4. Simulations of Secret Key Rate under Complete IR Attacks

The secret key rate of the proposed protocol under the IR attacks can be calculated as

RIR = βIIR
AB − IIR

BE, (A37)

where IIR
AB is the classical mutual information between Alice and Bob, IBS

BE is the leaked
information to Eve, and β is the reconciliation efficiency.

We find that g = 1 is optimal for Eve, which corresponds to the lowest estimation
of the secret key rate. The secret key rate, as a function of the transmission distance and
state amplitude against the IR attacks, are shown in Figure A10. It can be seen that Eve can
always capture the secret key by using the complete IR attacks, whatever the transmission
distance and state amplitude are for the specified threshold and homodyne detections, if
ignoring the disturbance of the channel excess noise. We can see that Eve will optimize her
eavesdropping strategy by first considering the use of the IR attacks. However, Eve’s IR
attacks will inevitably introduce extra excess noise. Thus, she will try to find an optimal
eavesdropping strategy to cover her IR attacks.

Figure A10. (Color online). The secret key rates under the complete IR attacks. The other parameters
are set as εc = 0.03, η = 0.6, νel = 0.04, β = 0.98, κ = 0.01 · (2ηT).

Appendix D. Secret Key Rate of the Phase-Matching Protocol

The secret key rate of the proposed protocol under the non-Gaussian individual
attacks, i.e., the one based on the SD attacks, combined with BS and partial IR attacks, can
be evaluated as

Rs(a) = βIs(a)
AB − Is(a)

BE , (A38)

where Is(a)
AB is the classical mutual information between Alice and Bob for the symmetric or,

ideally, asymmetric case, Is(a)
BE is the leaked information to Eve for the symmetric or, ideally,

asymmetric case, and β is the reconciliation efficiency.
We first consider eavesdropping in the symmetric case, and we suppose the transmis-

sion efficiencies and excess noises of the quantum channels between Alice and Charlie, and
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Bob and Charlie, are both T and εc, respectively. Eve will preferentially perform IR attacks
on two quantum channels and the whole measurement station due to its effectiveness.
However, she should use the channel excess noise to cover her eavesdropping. In particular,
if the total channel excess noise εt

c is equal to, or larger than, the total evaluated excess noise
εe

c =
2ηT−νel−1

ηT induced by the complete IR attacks, Eve can replace the quantum channels
with noiseless ones to cover the induced extra excess noise and capture all the secret keys
by performing complete IR attacks. When εt

c < εe
c, she will perform IR attacks on a fraction

µ = εt
c

εe
c

of the states, and will performs BS-combined SD attacks on the remaining fraction
1− µ of the states. Here, both the quantum channels are replaced with noiseless ones to
cover Eve’s induced extra excess noise.

Thus, the mutual information between Alice and Bob for the proposed protocol can be
calculated as

Is
AB = µIIR

AB(εc = 0) + (1− µ)IBS
AB(εc = 0), (A39)

where IBS
AB = PBS

AB[1−H(PBS
AB,e)], IIR

AB = PIR
AB[1−H(PIR

AB,e)]. The mutual information be-
tween Bob and Eve will be

Is
BE = µIIR

BE(εc = 0) + (1− µ)IBS,s
BE (εc = 0), (A40)

where IBS,s
BE = PBS,s

BE [1 −H(PBS,s
BE,e)], IIR

BE = PIR
BE[1 −H(PIR

BE,e)]. We find g = 1 is optimal
for Eve.

For the ideally asymmetric case, Eve can access the channel between Alice and Charlie.
She will preferentially perform IR attacks due to their effectiveness, and to capture the
secret key. Moreover, she will use the channel excess noise to cover her eavesdropping.
If the total channel excess noise εt

c is equal to, or larger than, the total extra excess noise
εe

c induced by the complete IR attacks, Eve can capture all the secret keys by performing

complete IR attacks. While εt
c < εe

c, she will perform IR attacks on a fraction µ = εt
c

εe
c

of the
states, and will perform BS-combined SD attacks on the remaining fraction 1− µ of the
states. We can, similarly, obtain the mutual information between Alice and Bob as

Ia
AB = Is

AB. (A41)

Moreover, the leaked information to Eve will be

Ia
BE = µIIR

BE(εc = 0) + (1− µ)IBS,a
BE (εc = 0), (A42)

where IBS,a
BE = PBS,a

BE [1−H(PBS,a
BE,e)]. We find g = 1 is also optimal for Eve.

Appendix E. Frequency Offset Recovery and Phase Drift Compensation

Before the frequency offset recovery, we should firstly perform the frequency offset
estimation. The purpose is to accurately evaluate the frequency offset δ fA(B)L between
Alice’s (Bob’s) laser and the local-LO laser (here, the frequency offsets for Alice and Bob are
all δ f in the proof-of-principle experiment). The annihilation operator of Alice and Bob’s
pilots after transmitting through the quantum channel, which consist of some classical
unmodulated signals, can be expressed as

ÊPA1 → APA1 exp[−i(ωAt + φPA)], (A43)

ÊPB1 → APB1 exp[−i(ωBt + φPB)],

where APA(B)1
= XPA(B)1

+ iPPA(B)1
is the constant complex amplitude of the pilot, ωA(B) =

2π fA(B) is the center frequency of Alice’s (Bob’s) laser, and φPA(B) is the phase drift of
the pilot. Moreover, since LO is a classical signal, its annihilation operator can be also
expressed as

ÊL → AL exp[−i(ωLt + φL)], (A44)
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where ωL = 2π fL, φL are the center frequencies and the initial phases of LO, respectively.
The pilot signals are then sent by Alice and Bob simultaneously to Charlie for interference
through the BS, and are detected by homodyne detectors the same as the quantum signals.
Here, φL = 0 and φL = π/2 are set to get the quadratures XA2 and PB2 , respectively. The
photocurrent signals of the pilots obtained from the homodyne detectors can be expressed as

IPA2(t) =

√
2qAL
Td

[APA1 cos(2πδ fALt + φPA1) (A45)

+APB1 cos(2πδ fBLt + φPB1) + nC(t)],

IPB2(t) =

√
2qAL
Td

[APA1 sin(2πδ fALt + φPA1)

−APB1 sin(2πδ fBLt + φPB1) + nD(t)],

where q is the electron charge, Td is the signal duration, and δ fAL = fA − fL and δ fBL =
fB − fL, and nC(D)(t) represent the shot noise in detections. Since the signal-to-noise ratio
(SNR) of the pilots is relatively high in comparison to the quantum signal, classic frequency
offset estimation algorithms [65] can be adopted here. We can see the output signals are
good indicators for the estimation of the frequency offset. The peak points in the spectrum
of the signals will show the frequency offsets δ f̃AL and δ f̃BL, which can be directly realized
via fast Fourier transform (FFT) on the received quadrature signals IPA2(t) and IPB2(t). The
peaks can still appear clearly at a low SNR, which is demonstrated in [55].

In practical scenarios, the intensity of the pilot should be reasonably designed based
on the channel loss, such that Charlie can distinguish them. It should be mentioned that
although we estimate the absolute value |δ f̃A(B)L|, the sign is not confirmed. A method
is proposed in [65] that one can try out the positive and negative values to verify the
correctness. However, in the proposed CV-MDI-QKD protocol, since only one quadrature
is detected for the output modes A2 and B2, phase compensation cannot be performed at the
receiver’s site. Therefore, the frequency offset can only be compensated at the senders’ sites.
Here, the correlation coefficient can be used to determine the sign of the frequency offset.

Specifically, Alice and Bob first disclose a part of the modulated data Xp
a , Pp

a and Xp
b , Pp

b ,
which are used for parameter estimations. Then, they perform frequency offset recovery on
them. Since the sign of the offset is not known, one will try four cases. Supposing that the
phase drifts through the transmission are φ1 and φ2, one can get

α̃P
a = exp(±i2πδ f̃ALt + φ1) · (Xp

a + iPp
a ), (A46)

α̃P
b = exp(±i2πδ f̃BLt + φ2) · (Xp

b + iPp
b ).

It should be noted that the added shot noise in the state preparation and transmission and
the electronic noise of detection will not affect the evaluation of the correlation coefficient,
and the channel loss and detection inefficiency will just affect the whole correlation coeffi-
cient value. Therefore, we will simplify the following processing without considering the
transmission and detection inefficiency and the induced shot noise and electronic noise.
Thus, the quadrature components XA2 and PB2 can be evaluated by the homodyne detection
results as

X̃A2 ∼ Re[(α̃P
a + α̃P

b )/
√

2], (A47)

P̃B2 ∼ Im[(α̃P
a − α̃P

b )/
√

2].

One can then calculate the cross-correlation coefficient between X̃A2(P̃B2) and the real
measurement results XA2(PB2) for different signs of frequency offsets. In each case, the
phase angles φ1(2) are traversed from 0 to 2π to calculate the corresponding value of
correlation coefficient. We will find that only one frequency offset sign has the highest
peak value of the correlation coefficient with specified phase angles φ1 = φ̃A and φ2 = φ̃B.
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Therefore, the signs of frequency offsets can be determined, and the phase angles φ̃A and
φ̃B are just the estimated drifted phases in Alice and Bob’s data segments, respectively.

Finally, the frequency offset recovery and phase drift compensation can be imple-
mented on Alice and Bob’s preparation values, according to the estimated frequency offset
and phase drift, as

X̃a(b) + iP̃a(b) = exp(2πδ f̃A(B)Lt + φ̃A(B)) · (Xa(b) + iPa(b)), (A48)

X̃P
a(b) + iP̃P

a(b) = exp(2πδ f̃A(B)Lt + φ̃A(B)) · (XP
a(b) + iPP

a(b)),

where X̃a(b), P̃a(b) and X̃P
a(b), P̃P

a(b) represent the recovered data in Alice and Bob’s sites.
Based on these, Alice and Bob can perform parameter estimations and data reconciliations,
just like the original protocol. We should note that the phase drifts in one frame are assumed
constant. In practical scenarios, the size of one frame should be determined according to
the realistic rate of phase drifts, such that the phase drift estimation algorithm can track the
fluctuation of phase drifts in real time.
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