Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations
Abstract
:1. Introduction
2. Isospectral and Nonisospectral ANKS Hierarchies
3. Two Kinds of Integrable Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newell, A.C. Solitons in Mathematics and Physics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1985. [Google Scholar]
- Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. 1992, 13, 79–89. [Google Scholar]
- Hu, X.B. A powerful approach to generate new integrable systems. J. Phys. A Gen. Phys. 1994, 27, 2497–2514. [Google Scholar] [CrossRef]
- Geng, X.G.; Ma, W.X. A Multipotential Generalization of the Nonlinear Diffusion Equation. J. Phys. Soc. Jpn. 2000, 69, 985–986. [Google Scholar] [CrossRef]
- Fan, E.G. Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation. J. Phys. A Math. Theor. 2009, 42, 095206. [Google Scholar] [CrossRef]
- Qiao, Z.J.; Fan, E.G. Negative-order Korteweg–De Vries equations. Phys. Rev. E 2012, 86, 016601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasilshchik, I.S.; Verbovetsky, A.M. Geometry of jet spaces and integrable systems. J. Geom. Phys. 2011, 61, 1633–1674. [Google Scholar] [CrossRef] [Green Version]
- Blaszak, M.; Ma, W.X. New Liouville integrable noncanonical Hamiltonian systems from the AKNS spectral problem. J. Math. Phys. 2002, 43, 3107–3123. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B.; Oevel, W. A 3 × 3 matrix spectral problem for AKNS hierarchy and its binary nonlinearization. Phys. Statal Mech. Its Appl. 1996, 233, 331–354. [Google Scholar] [CrossRef] [Green Version]
- Fuchssteiner, B. Coupling of completely integrable systems: The perturbation bundl. In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations; Clarkson, P.A., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 125–138. [Google Scholar]
- Ma, W.X.; Fuchssteiner, B. Integrable theory of the perturbation equations. Chaos Solitons Fractals 1996, 7, 1227–1250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Zhang, H.Q. A direct method for integrable couplings of TD hierarchy. J. Math. Phys. 2002, 43, 466–472. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, H.Q.; Yan, Q.Z. Integrable couplings of Botie–Pempinelli–Tu (BPT) hierarchy. Phys. Lett. A 2002, 299, 543–548. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Guo, F.K. Matrix Lie Algebras and Integrable Couplings. Commun. Theor. Phys. 2006, 46, 812–818. [Google Scholar]
- Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A 2005, 38, 8537–8548. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear-Anal.-Theory Methods Appl. 2009, 71, 1716–1726. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Lu, H.H.; Zhang, Y.F.; Mei, J.Q. A generalized isospectral-nonisospectral of heat equation hierarchy and its expanding integrable model. Adv. Differ. Equ. 2020, 2020, 471. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Generating of Nonisospectral Integrable Hierarchies via the Lie-Algebraic Recursion Scheme. Mathematics 2020, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Huang, H.C.; Xue, W.M.; Wu, X.N. The bi-Hamiltonian structures of some new Lax integrable hierarchies associated with 3 × 3 matrix spectral problems. Phys. Lett. A 1997, 235, 227–232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhang, Y.; Zhou, J. Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations. Symmetry 2022, 14, 402. https://doi.org/10.3390/sym14020402
Zhao S, Zhang Y, Zhou J. Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations. Symmetry. 2022; 14(2):402. https://doi.org/10.3390/sym14020402
Chicago/Turabian StyleZhao, Shiyin, Yufeng Zhang, and Jian Zhou. 2022. "Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations" Symmetry 14, no. 2: 402. https://doi.org/10.3390/sym14020402
APA StyleZhao, S., Zhang, Y., & Zhou, J. (2022). Several Isospectral and Non-Isospectral Integrable Hierarchies of Evolution Equations. Symmetry, 14(2), 402. https://doi.org/10.3390/sym14020402