Article

Generating of Nonisospectral Integrable Hierarchies via the Lie-Algebraic Recursion Scheme

Haifeng Wang and Yufeng Zhang *
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
* Correspondence: zhangyfcumt@163.com

Received: 20 February 2020; Accepted: 11 April 2020; Published: 17 April 2020

Abstract

In the paper, we introduce an efficient method for generating non-isospectral integrable hierarchies, which can be used to derive a great many non-isospectral integrable hierarchies. Based on the scheme, we derive a non-isospectral integrable hierarchy by using Lie algebra and the corresponding loop algebra. It follows that some symmetries of the non-isospectral integrable hierarchy are also studied. Additionally, we also obtain a few conserved quantities of the isospectral integrable hierarchies.

Keywords: non-isospectral integrable hierarchy; Lie algebra; Hamiltonian structure; symmetry; conserved quantity

PACS: 05.45.Yv; 02.30.Jr; 02.30.Ik

1. Introduction

We have known that there exist two main approaches for constructing nonlinear systems integrable by the inverse scattering transform: the one of the Lax representation $\left(L_{t}=[A, L]\right)$ and the one of the zero curvature representation $\left(U_{t}-V_{x}+[U, V]=0\right)[1,2]$. In [3], the authors introduced the spectral transform technique to solve certain classes of nonlinear evolution equations, and gave a thorough account also of the non-isospectral deformations of KdV-like equations [4,5]. Magri once proposed one approach for generating integrable systems [6], which was called the Lax-pair method $[7,8]$. Based on it, Tu [9] proposed a method for generating integrable Hamiltonian hierarchies by making use of a trace identity, which was called the Tu scheme [10,11]. Through making use of the Tu scheme, some integrable systems and the corresponding Hamiltonian structures as well as other properties were obtained, such as the works in [12-16]. It is well known that many different methods for generating isospectral integrable equations have been proposed [17-19]. However, as far non-isospectral integrable equations are concerned, fewer works were presented, as far as we know. In [20,21], the author proposed a method of constructing its corresponding non-isospearal $\lambda_{t}=\lambda^{n}(n \geq 0)$ hierarchy of evolution equations closely related to τ-symmetries. Generally speaking, integrable systems correspond to the isospectral $\left(\lambda_{t}=0\right)$ case, and mastersymmetries of integrable systems correspond to the non-isospectral $\lambda_{t}=\lambda^{n}(n \geq 0)$ case. In [22], the author adopted the Lenard series method to obtain some non-isospectral integrable hierarchies under the case $\lambda_{t}=\lambda^{m+1} M$, and found that the same spectral problem can produce two different hierarchies of soliton evolution equations.

In this article, we apply an efficient scheme to generating non-isospectral integrable hierarchies of evolution equations under the case where $\lambda_{t}=\sum_{j=0}^{n} k_{j}(t) \lambda^{n-j}$. Obviously, this case is a generalized expression for the case $\lambda_{t}=\lambda^{n}[23,24]$. By taking different values of the parameters in the non-isospectral integrable hierarchies, we can obtain many integrable equations, such as the coupled
equations. Under obtaining non-isospectral integrable systems, their properties including Darboux transformations, exact solutions, and so on, could be investigated; a lot of such work has been done, such as the papers [25-34].

2. A Non-Isospectral Integrable Hierarchy

In this section, we derive a non-isospectral integrable hierarchy by using the Lie algebra, and obtain a Hamiltonian construction of the hierarchy via the trace identity proposed by Tu [9]. In the following, the steps for generating non-isospectral integrable hierarchies of evolution equations present

Step 1: Introducing the spectral problems

$$
\begin{gather*}
\psi_{x}=U \psi, U=R+u_{1} e_{1}(n)+\cdots+u_{q} e_{q}(n), \tag{1}\\
\psi_{t}=V \psi, V=A_{1} e_{1}(n)+\cdots+A_{p} e_{p}(n), \tag{2}\\
\lambda_{t}=\sum_{i \geq 0} k_{i}(t) \lambda^{-N_{i} i}, \tag{3}
\end{gather*}
$$

where the potential functions $u_{1}, \cdots, u_{q} \in S$ (the Schwartz space), and $R(n), e_{1}(n), \cdots, e_{p}(n) \in \widetilde{G}$ satisfy that
(a) R, e_{1}, \cdots, e_{p} are linear independent,
(b) R is pseudoregular,
(c) $\operatorname{deg}(R(n)) \geq \operatorname{deg}\left(e_{i}(n)\right), i=1,2, \ldots, p$.

Step 2: Solving the following stationary zero curvature equation for $A_{i}, i=1,2, \ldots, p$:

$$
\begin{equation*}
V_{x}=\frac{\partial U}{\partial \lambda} \lambda_{t}+[U, V] \tag{4}
\end{equation*}
$$

It follows that one can get the compatibility condition of Equations (1) and (2)

$$
\begin{equation*}
\frac{\partial U}{\partial u} u_{t}+\frac{\partial U}{\partial \lambda} \lambda_{t}-V_{x}+[U, V]=0 \tag{5}
\end{equation*}
$$

Equation (4) can be broken down into

$$
\begin{equation*}
-V_{+, x}^{(n)}+\frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}+\left[U, V_{+}^{(n)}\right]=V_{-, x}^{(n)}-\frac{\partial U}{\partial \lambda} \lambda_{t,-}^{(n)}-\left[U, V_{-}^{(n)}\right] \tag{6}
\end{equation*}
$$

where

$$
\lambda_{t,+}^{(m)}=\lambda^{N_{i} m} \lambda_{t}-\lambda_{t,-}^{(m)}=\sum_{i=\mu}^{m} k_{i}(t) \lambda^{N_{i} m-N_{i} i+x}, x=0,1, \cdots, N_{i}-1 ; m<n .
$$

Step 3: We search for a modified term \triangle_{n} so that, for

$$
\begin{aligned}
V^{(n)}=\left(\lambda^{N_{i} n} V\right)_{+}+\triangle_{n} & =: V_{+}^{(n)}+\triangle_{n} \\
-V_{x}^{(n)}+\frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}+\left[U, V^{(n)}\right] & =B_{1} e_{1}+\cdots+B_{q} e_{q}
\end{aligned}
$$

where $B_{i}(i=1,2, \ldots, q) \in C$.
Step 4: The non-isospectral integrable hierarchies of evolution equations could be deduced via the non-isospectral zero curvature equation

$$
\begin{equation*}
\frac{\partial U}{\partial u} u_{t}+\frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}-V_{x}^{(n)}+\left[U, V^{(n)}\right]=0 . \tag{7}
\end{equation*}
$$

Step 5: The Hamiltonian structures of the hierarchies Equation (7) are sought out according to the trace identity given by Tu [9]. We will show the specific calculation process in the following:

A basis of the Lie algebra A is given by

$$
A=\operatorname{span}\{h, e, f\}
$$

with $h=\frac{1}{2}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right), e=\frac{1}{2}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right), f=\frac{1}{2}\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$, and the corresponding loop algebra is taken by

$$
\widetilde{A}=\operatorname{span}\{h(n), e(n), f(n)\}
$$

where $h(n)=h \lambda^{2 n}, e(n)=e \lambda^{2 n-1}, f(n)=f \lambda^{2 n-1}$. It is easy to find that the commutator of \widetilde{A} is as follows:
$[h(n), e(m)]=f \lambda^{2 n+2 m-1}=f(m+n),[h(n), f(m)]=e(m+n),[e(n), f(m)]=h(m+n-1), m, n \in Z$, where the gradations of $h(n), e(n)$, and $f(n)$ are given by

$$
\operatorname{deg} h(n)=2 n, \operatorname{deg} e(n)=2 n-1, \operatorname{deg} f(n)=2 n-1, n \in Z
$$

Consider the following non-isospectral problems based on \widetilde{A}

$$
\begin{gather*}
\psi_{x}=U \psi, U=h(1)+q e(1)+r f(1)=\frac{1}{2}\left(\begin{array}{cccc}
\lambda^{2} & (r+q) \lambda & 0 & 0 \\
(r-q) \lambda & -\lambda^{2} & 0 & 0 \\
0 & 0 & \lambda^{2} & (r+q) \lambda \\
0 & 0 & (r-q) \lambda & -\lambda^{2}
\end{array}\right), \tag{8}\\
\psi_{t}=V \psi, \quad V=a h(0)+b e(1)+c f(1)=\frac{1}{2}\left(\begin{array}{cccc}
a & (b+c) \lambda & 0 & 0 \\
(-b+c) \lambda & -a & 0 & 0 \\
0 & 0 & a & (b+c) \lambda \\
0 & 0 & (-b+c) \lambda & -a
\end{array}\right), \tag{9}
\end{gather*}
$$

where $\bar{i}^{2}=-1, a=\sum_{i \geq 0} a_{i} \lambda^{-2 i}, b=\sum_{i \geq 0} b_{i} \lambda^{-2 i}, c=\sum_{i \geq 0} c_{i} \lambda^{-2 i}$.
It follows that we have

$$
\begin{aligned}
\frac{\partial U}{\partial \lambda} \lambda_{t} & =\frac{1}{2}\left(\begin{array}{cccc}
2 \lambda & r+q & 0 & 0 \\
r-q & -2 \lambda & 0 & 0 \\
0 & 0 & 2 \lambda & r+q \\
0 & 0 & r-q & -2 \lambda
\end{array}\right) \sum_{i \geq 0} k_{i}(t) \lambda^{-2 i+1} \\
& =\sum_{i \geq 0} k_{i}(t)[2 h(1-i)+q e(1-i)+r f(1-i)] .
\end{aligned}
$$

Furthermore, the following equation can be derived by taking $\lambda_{t}=\sum_{i \geq 0} k_{i}(t) \lambda^{1-2 i}$ with Equation (6),

$$
\left\{\begin{array}{l}
a_{i x}=q c_{i+1}-r b_{i+1}+2 k_{i+1}(t) \tag{10}\\
b_{i x}=c_{i+1}-r a_{i}+k_{i}(t) q \\
c_{i x}=b_{i+1}-q a_{i}+k_{i}(t) r
\end{array}\right.
$$

that is,

$$
\left\{\begin{array}{l}
a_{i x}=q b_{i x}-r c_{i x}-q^{2} k_{i}(t)+r^{2} k_{i}(t)+2 k_{i+1}(t) \tag{11}\\
c_{i+1}=b_{i x}+r a_{i}-q k_{i}(t) \\
b_{i+1}=c_{i x}+q a_{i}-r k_{i}(t)
\end{array}\right.
$$

We take the initial values

$$
b_{0}=k_{0} \partial^{-1} q, \quad c_{0}=k_{0} \partial^{-1} r
$$

Then, Equation (11) admits that

$$
\begin{gathered}
a_{0}=2 k_{1}(t) x+\beta_{0}(t), \\
b_{1}=2 k_{1}(t) q x, \quad c_{1}=2 k_{1}(t) r x, \\
a_{1}=k_{1}(t) x\left(q^{2}-r^{2}\right)+2 k_{2}(t) x+\beta_{1}(t), \\
b_{2}=k_{1}(t)\left(r+2 x r_{x}\right)+q x\left(k_{1}(t) q^{2}-k_{1}(t) r^{2}+2 k_{2}(t)\right), \\
c_{2}=k_{1}(t)\left(q+2 x q_{x}\right)+r x\left(k_{1}(t) q^{2}-k_{1}(t) r^{2}+2 k_{2}(t)\right),
\end{gathered}
$$

where $\beta_{0}(t) \beta_{1}(t)=0$ is an integral constant. Denoting that

$$
\begin{aligned}
V_{+}^{(n)} & =\sum_{i=0}^{n}\left(a_{i} h(n-i)+b_{i} e(n+1-i)+c_{i} f(n+1-i)\right) \\
V_{-}^{(n)} & =\sum_{i=n+1}^{\infty}\left(a_{i} h(n-i)+b_{i} e(n+1-i)+c_{i} f(n+1-i)\right) \\
\lambda_{t,+}^{(n)} & =\sum_{i=0}^{n} K_{i}(t) \lambda^{2 n-2 i+1}, \quad \lambda_{t,-}^{(n)}=\sum_{i=n+1}^{\infty} K_{i}(t) \lambda^{2 n-2 i+1}
\end{aligned}
$$

By using Equations (8) and (9), the gradations of the left-hand side of Equation (6) are derived as:

$$
\operatorname{deg} V_{+}^{(n)}=:(0,1,1) \geq 0, \operatorname{deg} \frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}=:(2,1,1) \geq 1, \operatorname{deg}\left(\left[U, V_{+}^{(n)}\right]\right)=:(2,1,1 ; 0,1,1) \geq 1
$$

which signifies that the minimum gradation of the left-hand side of Equation (6) is zero. Similarly, the gradations of the right-hand side of Equation (6) are also obtained as follows:

$$
\operatorname{deg} V_{-}^{(n)}=:(-2,-1,-1) \leq-1, \operatorname{deg} \frac{\partial U}{\partial \lambda} \lambda_{t,-}^{(n)}=:(0,-1,-1) \leq 0, \operatorname{deg}\left(\left[U, V_{-}^{(n)}\right]\right)=:(2,1,1 ;-2,-1,-1) \leq 1
$$

which indicates that the maximum gradation of the right-hand side of Equation (6) is 1. By taking these terms which have the gradations 0 and 1 , one has

$$
V_{-, x}^{(n)}-\frac{\partial U}{\partial \lambda} \lambda_{t,-}^{(n)}-\left[U, V_{-}^{(n)}\right]=-b_{n+1} f(1)-c_{n+1} e(1)-q c_{n+1} h(0)+r b_{n+1} h(0)-2 K_{n+1}(t) h(0),
$$

that is,

$$
\begin{equation*}
-V_{+, x}^{(n)}+\frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}+\left[U, V_{+}^{(n)}\right]=-b_{n+1} f(1)-c_{n+1} e(1)-q c_{n+1} h(0)+r b_{n+1} h(0)-2 K_{n+1}(t) h(0) \tag{12}
\end{equation*}
$$

In what follows, we takes modified term $\triangle_{n}=-a_{n} h(0)$ so that, for $V^{(n)}=V_{+}^{(n)}-a_{n} h(0)$ to obtain the non-isospectral integrable hierarchies, we have from Equation (13) that

$$
-V_{x}^{(n)}+\frac{\partial U}{\partial \lambda} \lambda_{t,+}^{(n)}+\left[U, V^{(n)}\right]=\left(-c_{n+1}+r a_{n}\right) e(1)+\left(-b_{n+1}+q a_{n}\right) f(1)
$$

Thus, Equation (7) admits the non-isospectral integrable hierarchy

$$
\begin{align*}
u_{t_{n}} & =\binom{q}{r}_{t_{n}}=\binom{c_{n+1}-r a_{n}}{b_{n+1}-q a_{n}}=\binom{b_{n x}-K_{n}(t) q}{c_{n x}-K_{n}(t) r} \\
& =\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right)\binom{c_{n}}{b_{n}}-K_{n}(t)\binom{q}{r} \tag{13}\\
& =: J_{1}\binom{c_{n}}{b_{n}}-K_{n}(t)\binom{q}{r},
\end{align*}
$$

or

$$
\begin{align*}
u_{t_{n}} & =\binom{q}{r}_{t_{n}}=\binom{r \partial^{-1} r b_{n+1}+\left(1-r \partial^{-1} q\right) c_{n+1}-2 r K_{n+1}(t) x}{-q \partial^{-1} q c_{n+1}+\left(1+q \partial^{-1} r\right) b_{n+1}-2 q K_{n+1}(t) x} \\
& =\left(\begin{array}{cc}
1-r \partial^{-1} q & r \partial^{-1} r \\
-q \partial^{-1} q & 1+q \partial^{-1} r
\end{array}\right)\binom{c_{n+1}}{b_{n+1}}+2 K_{n+1}(t) x\binom{-r}{-q} \tag{14}\\
& =: J_{2}\binom{c_{n+1}}{b_{n+1}}+2 K_{n+1}(t) x\binom{-r}{-q},
\end{align*}
$$

where

$$
J_{1}=\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{cc}
1-r \partial^{-1} q & r \partial^{-1} r \\
-q \partial^{-1} q & 1+q \partial^{-1} r
\end{array}\right) .
$$

From Equation (11), we infer that

$$
\begin{align*}
\binom{c_{n+1}}{b_{n+1}} & =\left(\begin{array}{cc}
-r \partial^{-1} r \partial & \partial+r \partial^{-1} q \partial \\
\partial-q \partial^{-1} r \partial & q \partial^{-1} q \partial
\end{array}\right)\binom{c_{n}}{b_{n}}+K_{n}(t)\binom{r \partial^{-1}\left(-q^{2}+r^{2}\right)-q}{q \partial^{-1}\left(-q^{2}+r^{2}\right)-r}+2 K_{n+1}(t) x\binom{r}{q} \tag{15}\\
& =: L\binom{c_{n}}{b_{n}}+K_{n}(t) Q+2 K_{n+1}(t) x R,
\end{align*}
$$

where

$$
L=\left(\begin{array}{cc}
-r \partial^{-1} r \partial & \partial+r \partial^{-1} q \partial \\
\partial-q \partial^{-1} r \partial & q \partial^{-1} q \partial
\end{array}\right), \quad Q=\binom{r \partial^{-1}\left(-q^{2}+r^{2}\right)-q}{q \partial^{-1}\left(-q^{2}+r^{2}\right)-r}, \quad R=\binom{r}{q} .
$$

Therefore, Equation (13) can be written as

$$
\begin{align*}
u_{t_{n}} & =\binom{q}{r}_{t_{n}}=J_{1} L^{n}\binom{K_{0} \partial^{-1} r}{K_{0} \partial^{-1} q}+J_{1} \sum_{i=0}^{n-1}\left(L^{i} K_{n-1-i}(t) Q\right)+2 J_{1} \sum_{i=0}^{n-1} L^{i} K_{n-i}(t) x R-K_{n}(t)\binom{q}{r} \tag{16}\\
& =\Phi^{n} K_{0}\binom{q}{r}+\sum_{i=0}^{n-1} \Phi^{i} J_{1} K_{n-1-i}(t) Q+2 \sum_{i=0}^{n-1} K_{n-i}(t) \Phi^{i} \partial\binom{x q}{x r}-K_{n}(t)\binom{q}{r},
\end{align*}
$$

where

$$
\Phi=J_{1} L J_{1}^{-1}=\left(\begin{array}{cc}
q_{x} \partial^{-1} q+q^{2} & \partial-q_{x} \partial^{-1} r-q r \tag{17}\\
\partial+r_{x} \partial^{-1} q+q r & -r_{x} \partial^{-1} r-r^{2}
\end{array}\right)
$$

When $n=1$, the non-isospectral integrable hierarchy Equation (16) becomes

$$
\left\{\begin{array}{l}
q_{t}=K_{1}\left(2 x q_{x}+q\right) \tag{18}\\
r_{t}=K_{1}\left(2 x r_{x}+r\right)
\end{array}\right.
$$

When $n=2$, the non-isospectral integrable hierarchy Equation (16) reduces to

$$
\left\{\begin{array}{l}
q_{t}=K_{1}\left(q^{3} x-q r^{2} x+r+2 r_{x} x\right)_{x}+2 K_{2}(q x)_{x}+K_{2}\left(2 x q_{x}+q\right) \tag{19}\\
r_{t}=K_{1}\left(-r^{3} x+r q^{2} x+q+2 q_{x} x\right)_{x}+K_{2}\left(2 x r_{x}+r\right)
\end{array}\right.
$$

Furthermore, we focus on a format of Hamiltonian constructure of the hierarchy Equation (16) via the trace identity proposed by Tu [9]. Denoting the trace of the square matrices A and B by $<A, B>=\operatorname{tr}(A B)$.

Equations (8) and (9) admit that

$$
<V, \frac{\partial U}{\partial q}>=-b \lambda^{2},<V, \frac{\partial U}{\partial r}>=c \lambda^{2},<V, \frac{\partial U}{\partial \lambda}>=c r \lambda+2 a \lambda-b q \lambda
$$

which can be substituted into the trace identity

$$
\frac{\delta}{\delta u}\left(<V, \frac{\partial U}{\partial \lambda}>\right)=\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma}\binom{<V, \frac{\partial U}{\partial q}>}{<V, \frac{\partial U}{\partial r}>}
$$

gives rise to

$$
\begin{equation*}
\frac{\delta}{\delta u}(c r \lambda+2 a \lambda-b q \lambda)=\lambda^{-\gamma} \frac{\partial}{\partial \lambda}\binom{-b \lambda^{2+\gamma}}{c \lambda^{2+\gamma}} \tag{20}
\end{equation*}
$$

It follows that one can get the following equation by comparing the two sides of the above formula

$$
\begin{equation*}
\frac{\delta}{\delta u}\left(2 a_{n}-q b_{n}+r c_{n}\right)=(2-2 n+\gamma)\binom{-b_{n}}{c_{n}} \tag{21}
\end{equation*}
$$

Inserting the initial values of Equations (11) into (21), we obtain $\gamma=0$. Hence, we have

$$
\binom{-b_{n}}{c_{n}}=\frac{\delta H_{n}}{\delta u}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{c_{n}}{b_{n}}=: M_{1}\binom{c_{n}}{b_{n}}
$$

where

$$
H_{n}=\frac{2 \bar{i} a_{n}-q b_{n}-r c_{n}}{2 n-2}, \quad M_{1}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad M_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Hence, the hierarchy Equations (13) and (14) can be written as

$$
\begin{equation*}
u_{t_{n}}=\binom{q}{r}_{t_{n}}=J_{1} M_{1}^{-1} \frac{\delta H_{n}}{\delta u}-K_{n}(t)\binom{q}{r}=J_{2} M_{1}^{-1} \frac{\delta H_{n+1}}{\delta u}+2 K_{n+1}(t) x\binom{-r}{-q} \tag{22}
\end{equation*}
$$

It is remarkable that, when $K_{n}(t)=K_{n+1}(t)=0$, Equation (22) is the Hamiltonian structure of the corresponding isospectral integrable hierarchy of Equation (16).

3. Discussion on Symmetries and Conserved Quatities

In this section, we consider the K symmetries and τ symmetries of the hierarchy Equation (16), and obtain some conserved quantities of the hierarchy Equation (16) from the obtained symmetries. The way to find K symmetries and τ symmetries comes from Li and Zhu [14], who applied the isospectral and non-isospectral integrable AKNS hierarchy to construct K symmetries and τ symmetries which constitute an infinite-dimensional Lie algebra. In the following, we show the specific process.

One can find that the Φ presented in Equation (17) satisfies

$$
\Phi^{\prime}[\Phi f] g-\Phi^{\prime}[\Phi g] f=\Phi\left\{\Phi^{\prime}[f] g-\Phi^{\prime}[g] f\right\}
$$

for $\forall f, g \in S$. Therefore, Φ is the hereditary symmetry of Equation (16). In addition, we can also prove the following relation holding:

Proposition 1.

$$
\begin{equation*}
\Phi^{\prime}\left[K_{0}\right]=\left[K_{0}^{\prime}, \Phi\right] \tag{23}
\end{equation*}
$$

where $K_{0}=\binom{q_{x}}{r_{x}}=u_{t_{0}}$.
In fact,

$$
\Phi^{\prime}\left[K_{0}\right]=\partial\left(\begin{array}{ll}
q_{x} \partial^{-1} q+q \partial^{-1} q_{x} & -q_{x} \partial^{-1} r-q \partial^{-1} r_{x} \\
r_{x} \partial^{-1} q+r \partial^{-1} q_{x} & -r_{x} \partial^{-1} r-r \partial^{-1} r_{x}
\end{array}\right)
$$

and thus

$$
\begin{gathered}
\Phi^{\prime}\left[K_{0}\right]=\left(\begin{array}{l}
q_{x x} \partial^{-1} q+\left(q^{2}\right)_{x}+q_{x} \partial^{-1} q_{x} \\
r_{x x} \partial^{-1} q+(q r)_{x}+r_{x} \partial^{-1} q_{x} \\
-q_{x x} \partial^{-1} r-(q r)_{x}-q_{x} \partial^{-1} r_{x} \\
K_{0}^{\prime} \Phi=\left(\begin{array}{cc}
\partial & 0 \\
0 & \partial
\end{array}\right)\left(\begin{array}{cc}
q_{x} \partial^{-1} q+q^{2} & \partial-q_{x} \partial^{-1} r-q r \\
\partial+r_{x} \partial^{-1} q+q r & -r_{x} \partial^{-1} r-r^{2}
\end{array}\right) \\
=\left(\begin{array}{cc}
q_{x x} \partial^{-1} q+3 q q_{x}+q^{2} \partial & \partial^{2}-q_{x x} \partial^{-1} r-2 q_{x} r-q r_{x}-q r \partial \\
\partial^{2}+r_{x x} \partial^{-1} q+2 r_{x} q+r q_{x}+q r \partial & -r_{x x} \partial^{-1} r-3 r r_{x}-r^{2} \partial
\end{array}\right) . \\
\Phi K_{0}^{\prime}=\left(\begin{array}{cc}
q_{x} \partial^{-1} q \partial+q^{2} \partial & \partial^{2}-q_{x} \partial^{-1} r \partial-q r \partial \\
\partial^{2}+r_{x} \partial^{-1} q \partial+q r \partial & -r_{x} \partial^{-1} r \partial-r^{2} \partial
\end{array}\right)
\end{array} .\right.
\end{gathered}
$$

We therefore verified that Equation (23) is correct. Owing to the Φ is a hereditary symmetry, one finds

$$
\Phi^{\prime}\left[K_{m}\right]=\left[K_{m}^{\prime}, \Phi\right]
$$

which means Φ is a strong symmetry, where $K_{m}=\Phi^{m}\binom{q_{x}}{r_{x}}$.

Proposition 2.

$$
\begin{equation*}
\Phi^{\prime}[x u]+\Phi(x u)^{\prime}-(x u)^{\prime} \Phi=H I \tag{24}
\end{equation*}
$$

where $u=\binom{q_{x}}{r_{x}}, H=\left(\begin{array}{ll}0 & \partial \\ \partial & 0\end{array}\right)$ and I is an identity matrix.
In fact,

$$
\Phi^{\prime}[x u]=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
A=q_{x} \partial^{-1} q+x q_{x x} \partial^{-1} q+2 x q_{x} q+q_{x} \partial^{-1} x q_{x} \\
B=-\left(q_{x} \partial^{-1} r+x q_{x x} \partial^{-1} r+x q_{x} r+x q r_{x}+q_{x} \partial^{-1} x r_{x}\right) \\
C=r_{x} \partial^{-1} q+x r_{x x} \partial^{-1} q+x r_{x} q+x r q_{x}+r_{x} \partial^{-1} x q_{x} \\
D=-\left(r_{x} \partial^{-1} r+x r_{x x} \partial^{-1} r+2 x r_{x} r+r_{x} \partial^{-1} x r_{x}\right)
\end{array}\right.
$$

$$
\Phi(x u)^{\prime}=\left(\begin{array}{cc}
x q^{2} \partial+x q q_{x}-q_{x} \partial^{-1}\left(q+x q_{x}\right) & -x q r \partial+\partial+x \partial^{2}-x r q_{x}+q_{x} \partial^{-1}\left(r+x r_{x}\right) \\
x q r \partial+\partial+x \partial^{2}+x q r_{x}-r_{x} \partial^{-1}\left(q+x q_{x}\right) & -x r^{2} \partial-x r r_{x}+r_{x} \partial^{-1}\left(r+x r_{x}\right)
\end{array}\right)
$$

$$
(x u)^{\prime} \Phi=\left(\begin{array}{cc}
x q_{x x} \partial^{-1} q+3 x q q_{x}+x q^{2} \partial & x \partial^{2}-x q_{x x} \partial^{-1} r-2 x r q_{x}-x q r_{x}-x q r \partial \\
x \partial^{2}+x r_{x x} \partial^{-1} q+2 x q r_{x}+x r q_{x}+x q r \partial & -x r_{x x} \partial^{-1} r-3 x r r_{x}-x r^{2} \partial
\end{array}\right)
$$

where

$$
(x u)^{\prime}[\sigma]=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0}\binom{x\left(q+\epsilon \sigma_{1}\right)_{x}}{x\left(q+\epsilon \sigma_{2}\right)_{x}}=x \partial\binom{\sigma_{1}}{\sigma_{2}} \Longrightarrow \quad(x u)^{\prime}=\left(\begin{array}{cc}
x \partial & 0 \\
0 & x \partial
\end{array}\right)
$$

Thus, Equation (24) holds.

Proposition 3.

$$
\begin{equation*}
\left[K_{1}, x u\right]=[\Phi u, x u]=H u+K_{1}, \tag{25}
\end{equation*}
$$

where $u=\binom{q_{x}}{r_{x}}, H=\left(\begin{array}{ll}0 & \partial \\ \partial & 0\end{array}\right)$ and $K_{1}=\Phi u$.
In fact,

$$
\begin{gathered}
\Phi u=\binom{r_{x x}+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right)-q r r_{x}+q^{2} q_{x}}{q_{x x}+\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right)+q r q_{x}-r^{2} r_{x}} \\
(\Phi u)^{\prime}=\left(\begin{array}{cc}
\frac{1}{2}\left(q^{2}-r^{2}\right) \partial+3 q q_{x}+q^{2} \partial-r r_{x} & \partial^{2}-q r \partial-(q r)_{x} \\
\partial^{2}+q r \partial+(q r)_{x} & \frac{1}{2}\left(q^{2}-r^{2}\right) \partial-3 r r_{x}-r^{2} \partial+q q_{x}
\end{array}\right) \\
(\Phi u)^{\prime}\binom{x q_{x}}{x r_{x}}=\binom{\frac{1}{2}\left(q^{2}-r^{2}\right) \partial\left(x q_{x}\right)+3 x q q_{x}^{2}+q^{2} \partial\left(x q_{x}\right)-x r r_{x} q_{x}+\partial^{2}\left(x r_{x}\right)-q r \partial\left(x r_{x}\right)-x r_{x}(q r)_{x}}{\partial^{2}\left(x q_{x}\right)+q r \partial\left(x q_{x}\right)+x q_{x}(q r)_{x}+\frac{1}{2}\left(q^{2}-r^{2}\right) \partial\left(x r_{x}\right)-3 x r r_{x}^{2}-r^{2} \partial\left(x r_{x}\right)+x r_{x} q q_{x}}
\end{gathered}
$$

Then, we have

$$
\begin{gathered}
(x u)^{\prime}[\Phi u]=\binom{x \partial\left(r_{x x}+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right)-q r r_{x}+q^{2} q_{x}\right)}{x \partial\left(q_{x x}+\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right)+q r q_{x}-r^{2} r_{x}\right)}, \\
{[\Phi u, x u]=(\Phi u)^{\prime}[x u]-(x u)^{\prime}[\Phi u]=\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right)\binom{q_{x}}{r_{x}}+\binom{r_{x x}+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right)-q r r_{x}+q^{2} q_{x}}{q_{x x}+\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right)+q r q_{x}-r^{2} r_{x}}=H u+K_{1} .}
\end{gathered}
$$

We therefore verified that Equation (25) is correct.

Proposition 4.

$$
\begin{equation*}
\left[K_{m}, K_{n}\right]=0, \quad m, n=0,1,2, \cdots \tag{26}
\end{equation*}
$$

where $K_{m}=\Phi^{m} u, \quad K_{n}=\Phi^{n} u$.

Proposition 5.

$$
\left[\Phi^{m} x u, x u\right]=m \Phi^{m-1}(x u) .
$$

The proofs of Propositions 4 and 5 were presented in [23].
From the above results, one have

$$
\left[\Phi^{m} x u, \Phi^{n} x u\right]=(m-n) \Phi^{m+n-1}(x u), \quad m=0,1,2, \cdots ; n=0,1,2, \cdots
$$

We can find that $\left\{\Phi^{n} u, \Phi^{m} x u\right\}$ can not constitute a Lie algebra from Equation (25). However, $\left\{\Phi^{n} u, n=\right.$ $0,1,2, \cdots\}$ and $\left\{\Phi^{n} x u, n=0,1,2, \cdots\right\}$ constitute the infinite-dimensional Lie algebra, respectively based on the above analysis.

Now, we will derive some conserved quantities of Tu isospectral hierarchy

$$
\begin{equation*}
u_{t_{n}}=\binom{q}{r}_{t_{n}}=\Phi^{n}\binom{q_{x}}{r_{x}} \tag{27}
\end{equation*}
$$

Definition 1 ([14,16]). If we have known the integrable hierarchy $u_{t}=K_{n}(u)$, then the v satisfied the following equation:

$$
\begin{equation*}
\frac{d v}{d t}+K^{\prime *} v=0 \tag{28}
\end{equation*}
$$

which is called the conserved covariance, where K^{\prime} is the linearized operator of K, and $K^{* *}$ denotes a conjugate operator of K^{\prime}.

Proposition $6([13,16])$. If σ is a symmetry of Equation $u_{t}=K_{n}(u), v$ is its conserved covariance, then we have

$$
\int_{-\infty}^{\infty} v \sigma d x=<v, \sigma>
$$

which is independent of time t, that is, $\frac{d}{d t}<v, \sigma>=0$.
Definition 2 ([13,14,16]). If $F^{\prime} f=<v, f>$, for $\forall f \in S$, then v is called the gradient of the functional F, which is denoted by $v=\frac{\delta F}{\delta u}$.

Proposition 7 ([16]). If $v^{\prime}=v^{* *}$, then v is the gradient of the following functional

$$
\begin{equation*}
F=\int_{0}^{1}<v(\lambda u), u>d \lambda \tag{29}
\end{equation*}
$$

According to the symbols above, we can deduce:
Proposition 8 ([13,14]). If I is a conserved quality of the hierarchy $u_{t}=K_{n}(u)$, and the conserved covariance v satisfies

$$
I^{\prime} K_{n}=<v, K_{n}>
$$

then one has

$$
\frac{\partial I}{\partial t}+<v, K_{n}>=0
$$

that is,

$$
\frac{\partial v}{\partial t}+K_{n}^{\prime *} v+v^{\prime} K_{n}=0
$$

Therefore, we deduce the following conserved quantities related to the integrable hierarchy $u_{t}=K_{n}(u)$

$$
\begin{equation*}
I_{m}=\int_{0}^{1}<\partial_{x}^{-1} K_{m}(\lambda u), u>d \lambda \tag{30}
\end{equation*}
$$

Moreover, a few conserved quantities are also derived for the integrable hierarchy Equation (27) as follows:

$$
\begin{gathered}
K_{0}=\Phi^{0} u=\binom{q_{x}}{r_{x}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-r_{x}}{q_{x}}, \\
I_{0}=\int_{0}^{1}<\partial_{x}^{-1} K_{0}(\lambda u), u>d \lambda=\int_{0}^{1}<\left[\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{q_{x} \lambda}{r_{x} \lambda}\right]^{T},\binom{q}{r}>d \lambda=\int_{-\infty}^{\infty}\left(q_{x} r-r_{x} q\right) d x \\
K_{1}=\Phi u=\binom{r_{x x}+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right)-q r r_{x}+q^{2} q_{x}}{q_{x x}+\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right)+q r q_{x}-r^{2} r_{x}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{-q_{x x}-\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right)-q r q_{x}+r^{2} r_{x}}{r_{x x}+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right)-q r r_{x}+q^{2} q_{x}}, \\
I_{1}=\int_{0}^{1}<\left[\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{r_{x x} \lambda+\frac{1}{2} q_{x}\left(q^{2}-r^{2}\right) \lambda^{3}-q r r_{x} \lambda^{3}+q^{2} q_{x} \lambda^{3}}{q_{x x} \lambda+\frac{1}{2} r_{x}\left(q^{2}-r^{2}\right) \lambda^{3}+q r q_{x} \lambda^{3}-r^{2} r_{x} \lambda^{3}}\right]^{T},\binom{q}{r}>d \lambda \\
=\int_{-\infty}^{\infty}\left[\frac{1}{2}\left(-q q_{x x}+r r r_{x x}\right)+\frac{1}{8}\left(q^{2}-r^{2}\right)\left(q_{x} r-r_{x} q\right)\right] d x
\end{gathered}
$$

$$
I_{k}=\int_{-\infty}^{\infty}<\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) K_{k}(\lambda u),\binom{q}{r}>d \lambda
$$

Author Contributions: Formal analysis, Y.Z.; Funding acquisition, Y.Z.; Investigation, H.W.; Methodology, Y.Z.; Writing original draft, H.W.; Writing review and editing, H.W. All authors have read and agreed to the published version of the manuscript.
Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11971475).
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Takhtadzhian, L.A.; Faddeev, L.D. Hamiltonian Approach in Soliton Theory; izdatel nauka: Moscow, Russian, 1986.
2. Blackmore, D.; Prykarpatsky, A.K.; Samoyleneko, V.H. Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Symplectic Integrability Analysis; World Scientic Publishing: Singapore, 2011.
3. Calogero, F.; Degasperis, A. Spectral Transform and Solitons; Springer: Berlin/Heidelberg, Germany, 1983.
4. Calogero, F.; Degasperis, A. Extension of the spectral transform method for solving nonlinear evolution equations. Lett. Nuovo C. 1978, 22, 131-137. [CrossRef]
5. Calogero, F.; Degasperis, A. Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation. Lett. Nuovo C. 1978, 23, 150-154. [CrossRef]
6. Magri, F. Nonlinear Evolution Equations and Dynamical Systems; Springer Lecture Notes in Physics 120; Springer: Berlin/Heidelberg, Germany, 1980; p. 233.
7. Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981.
8. Newell, A.C. Solitons in Mathematics and Physics; SIAM: Philadelphia, PA, USA, 1985.
9. Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330-338. [CrossRef]
10. Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 1992, 13, 79.
11. Ma, W.X. K symmetries and τ symmetries of evolution equations and their Lie algebras. J. Phys. A Math. Gen. 1990, 23, 2707-2716. [CrossRef]
12. Qiao, Z.J. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Physica A 1998, 252, 377-387. [CrossRef]
13. Li, Y.S. A kind of evolution equations and the deform of spectral. Sci. Sin. A 1982, 25, 385-387. (In Chinese)
14. Li, Y.S.; Zhu, G.C. New set of symmetries of the integrable equations, Lie algebras and non-isospectral evolution equations: II. AKNS suystem. J. Phys. A Math. Gen. 1986, 19, 3713-3725.
15. Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear schrödinger equation. J. Math. Phys. 1978, 19, 798-804. [CrossRef]
16. Li, Y.S.; Zhuang, D.W. Nonlinear evolution equations related to characteristic problems dependent on potential energy. Acta Math. Sin. 1982, 25, 464-474. (In Chinese)
17. Zhang, Y.F.; Tam, H. A few integrable systems and spatial spectral transformations. Commun. Nonlinear Sci. 2009, 14, 3770-3783. [CrossRef]
18. Zhang, Y.F.; Rui, W.J. A few continuous and discrete dynamical systems. Rep. Math. Phys. 2016, 78, 19-32. [CrossRef]
19. Zhang, Y.F.; Tam, H. Applications of the Lie algebra gl(2). Mod. Phys. Lett. B 2009, 23, 1763-1770. [CrossRef]
20. Ma, W.X. An approach for constructing non-isospectral hierarchies of evolution equations. J. Phys. A Math. Gen. 1992, 25, L719-L726. [CrossRef]
21. Ma, W.X. A simple scheme for generating non-isospectral flows from the zero curvature representation. Phys. Lett. A 1993, 179, 179-185. [CrossRef]
22. Qiao, Z.J. Generation of soliton hierarchy and general structure of its commutator representations. Acta Math. Appl. Sin. E 1995, 18, 287-301.
23. Zhang, Y.F.; Wang, H.F.; Bai, N. A general method for generating non-isospectral integrable hierarchies by the use of loop algebras. Chaos Solitons Fractals 2005, 25, 425-439.
24. Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and non-isospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 1-15. [CrossRef]
25. Yu, F.J. A novel non-isospectral hierarchy and soliton wave dynamics for a parity-time-symmetric nonlocal veltor nonlinear Gross-Pitaevskii equations. Commun. Nonlinear Sci. 2019, 78, 104852. [CrossRef]
26. Gao, X.D.; Zhang, S. Inverse scattering transform for a new non-isospectral integrable nonlinear AKNS model. Therm. Sci. 2017, 21, S153-S160. [CrossRef]
27. Estévz, P.G.; Sardón, C. Miura-reciprocal transformations for non-isospectral Camassa-Holm hierarchies in 2+1 dimensions. J. Nonlinear Math. Phys. 2013, 20, 552-564. [CrossRef]
28. Estévz, P.G.; Lejarreta, J.D.; Sardón, C. non-isospectral $1+1$ hierarchies arising from a Camassa-Holm hierarchy in 2+1 dimensions. J. Nonlinear Math. Phys. 2011, 18, 9-28. [CrossRef]
29. Zhao, X.H.; Tiao, B.; Li, H.M.; Guo, Y.J. Solitons, periodic waves, breathers and integrability for a non-isospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl. Math. Lett. 2017, 65, 48-55. [CrossRef]
30. Wang, H.F.; Zhang, Y.F. Residual Symmetries and Bäcklund Transformations of Strongly Coupled Boussinesq-Burgers System. Symmetry 2019, 11, 1365. [CrossRef]
31. Burtsev, S.P.; Zakharov, V.E.; Mikhailov, A.V. Inverse scattering method with variable spectral parameter. Theor. Math. Phys. 1987, 70, 227-240. [CrossRef]
32. Cieśliński, J. Algebraic representation of the linear problem as a method to construct the Darboux-Bäcklund transformation. Chaos Soliton Fract. 1995, 5, 2303-2313. [CrossRef]
33. Cieśliński, J. An algebraic method to construct the Darboux matrix. J. Math. Phys. 1995, 36, 5670. [CrossRef]
34. Belinski, V.; Verdaguer, E. Gravitational Solitons; Cambridge University Press: Cambridge, UK, 2001.
(c) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
