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Abstract: In the paper, we introduce an efficient method for generating non-isospectral integrable
hierarchies, which can be used to derive a great many non-isospectral integrable hierarchies. Based
on the scheme, we derive a non-isospectral integrable hierarchy by using Lie algebra and the
corresponding loop algebra. It follows that some symmetries of the non-isospectral integrable
hierarchy are also studied. Additionally, we also obtain a few conserved quantities of the isospectral
integrable hierarchies.
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1. Introduction

We have known that there exist two main approaches for constructing nonlinear systems
integrable by the inverse scattering transform: the one of the Lax representation (Lt = [A, L])
and the one of the zero curvature representation (Ut − Vx + [U, V] = 0) [1,2]. In [3], the authors
introduced the spectral transform technique to solve certain classes of nonlinear evolution equations,
and gave a thorough account also of the non-isospectral deformations of KdV-like equations [4,5].
Magri once proposed one approach for generating integrable systems [6], which was called the Lax-pair
method [7,8]. Based on it, Tu [9] proposed a method for generating integrable Hamiltonian hierarchies
by making use of a trace identity, which was called the Tu scheme [10,11]. Through making use of
the Tu scheme, some integrable systems and the corresponding Hamiltonian structures as well as
other properties were obtained, such as the works in [12–16]. It is well known that many different
methods for generating isospectral integrable equations have been proposed [17–19]. However,
as far non-isospectral integrable equations are concerned, fewer works were presented, as far as we
know. In [20,21], the author proposed a method of constructing its corresponding non-isospearal
λt = λn(n ≥ 0) hierarchy of evolution equations closely related to τ-symmetries. Generally speaking,
integrable systems correspond to the isospectral (λt = 0) case, and mastersymmetries of integrable
systems correspond to the non-isospectral λt = λn(n ≥ 0) case. In [22], the author adopted
the Lenard series method to obtain some non-isospectral integrable hierarchies under the case
λt = λm+1M, and found that the same spectral problem can produce two different hierarchies
of soliton evolution equations.

In this article, we apply an efficient scheme to generating non-isospectral integrable hierarchies

of evolution equations under the case where λt =
n
∑

j=0
k j(t)λn−j. Obviously, this case is a generalized

expression for the case λt = λn [23,24]. By taking different values of the parameters in the
non-isospectral integrable hierarchies, we can obtain many integrable equations, such as the coupled
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equations. Under obtaining non-isospectral integrable systems, their properties including Darboux
transformations, exact solutions, and so on, could be investigated; a lot of such work has been done,
such as the papers [25–34].

2. A Non-Isospectral Integrable Hierarchy

In this section, we derive a non-isospectral integrable hierarchy by using the Lie algebra,
and obtain a Hamiltonian construction of the hierarchy via the trace identity proposed by Tu [9]. In the
following, the steps for generating non-isospectral integrable hierarchies of evolution equations present

Step 1: Introducing the spectral problems

ψx = Uψ, U = R + u1e1(n) + · · ·+ uqeq(n), (1)

ψt = Vψ, V = A1e1(n) + · · ·+ Apep(n), (2)

λt = ∑
i≥0

ki(t)λ−Ni i, (3)

where the potential functions u1, · · · , uq ∈ S(the Schwartz space), and R(n), e1(n), · · · , ep(n) ∈ G̃
satisfy that

(a) R, e1, · · · , ep are linear independent,
(b) R is pseudoregular,
(c) deg(R(n)) ≥ deg(ei(n)), i = 1, 2, . . . , p.

Step 2: Solving the following stationary zero curvature equation for Ai, i = 1, 2, . . . , p:

Vx =
∂U
∂λ

λt + [U, V]. (4)

It follows that one can get the compatibility condition of Equations (1) and (2)

∂U
∂u

ut +
∂U
∂λ

λt −Vx + [U, V] = 0. (5)

Equation (4) can be broken down into

−V(n)
+,x +

∂U
∂λ

λ
(n)
t,+ + [U, V(n)

+ ] = V(n)
−,x −

∂U
∂λ

λ
(n)
t,− − [U, V(n)

− ], (6)

where

λ
(m)
t,+ = λNimλt − λ

(m)
t,− =

m

∑
i=µ

ki(t)λNim−Ni i+x, x = 0, 1, · · · , Ni − 1; m < n.

Step 3: We search for a modified term4n so that, for

V(n) = (λNinV)+ +4n =: V(n)
+ +4n,

−V(n)
x +

∂U
∂λ

λ
(n)
t,+ + [U, V(n)] = B1e1 + · · ·+ Bqeq,

where Bi(i = 1, 2, . . . , q) ∈ C.
Step 4: The non-isospectral integrable hierarchies of evolution equations could be deduced via

the non-isospectral zero curvature equation

∂U
∂u

ut +
∂U
∂λ

λ
(n)
t,+ −V(n)

x + [U, V(n)] = 0. (7)
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Step 5: The Hamiltonian structures of the hierarchies Equation (7) are sought out according to the
trace identity given by Tu [9]. We will show the specific calculation process in the following:

A basis of the Lie algebra A is given by

A = span{h, e, f }

with h = 1
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , e = 1
2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , f = 1
2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , and the

corresponding loop algebra is taken by

Ã = span{h(n), e(n), f (n)},

where h(n) = hλ2n, e(n) = eλ2n−1, f (n) = f λ2n−1. It is easy to find that the commutator of Ã is as
follows:

[h(n), e(m)] = f λ2n+2m−1 = f (m+n), [h(n), f (m)] = e(m+n), [e(n), f (m)] = h(m+n− 1), m, n ∈ Z,

where the gradations of h(n), e(n), and f (n) are given by

deg h(n) = 2n, deg e(n) = 2n− 1, deg f (n) = 2n− 1, n ∈ Z.

Consider the following non-isospectral problems based on Ã

ψx = Uψ, U = h(1) + qe(1) + r f (1) =
1
2


λ2 (r + q)λ 0 0

(r− q)λ −λ2 0 0
0 0 λ2 (r + q)λ
0 0 (r− q)λ −λ2

 , (8)

ψt = Vψ, V = ah(0) + be(1) + c f (1) =
1
2


a (b + c)λ 0 0

(−b + c)λ −a 0 0
0 0 a (b + c)λ
0 0 (−b + c)λ −a

 , (9)

where i2 = −1, a = ∑
i≥0

aiλ
−2i, b = ∑

i≥0
biλ
−2i, c = ∑

i≥0
ciλ
−2i.

It follows that we have

∂U
∂λ

λt =
1
2


2λ r + q 0 0

r− q −2λ 0 0
0 0 2λ r + q
0 0 r− q −2λ

∑
i≥0

ki(t)λ−2i+1

= ∑
i≥0

ki(t)[2h(1− i) + qe(1− i) + r f (1− i)].

Furthermore, the following equation can be derived by taking λt = ∑
i≥0

ki(t)λ1−2i with

Equation (6), 
aix = qci+1 − rbi+1 + 2ki+1(t),

bix = ci+1 − rai + ki(t)q,

cix = bi+1 − qai + ki(t)r,

(10)
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that is, 
aix = qbix − rcix − q2ki(t) + r2ki(t) + 2ki+1(t),

ci+1 = bix + rai − qki(t),

bi+1 = cix + qai − rki(t).

(11)

We take the initial values
b0 = k0∂−1q, c0 = k0∂−1r.

Then, Equation (11) admits that
a0 = 2k1(t)x + β0(t),

b1 = 2k1(t)qx, c1 = 2k1(t)rx,

a1 = k1(t)x(q2 − r2) + 2k2(t)x + β1(t),

b2 = k1(t)(r + 2xrx) + qx(k1(t)q2 − k1(t)r2 + 2k2(t)),

c2 = k1(t)(q + 2xqx) + rx(k1(t)q2 − k1(t)r2 + 2k2(t)),

· · ·

where β0(t)β1(t) = 0 is an integral constant. Denoting that

V(n)
+ =

n

∑
i=0

(aih(n− i) + bie(n + 1− i) + ci f (n + 1− i)),

V(n)
− =

∞

∑
i=n+1

(aih(n− i) + bie(n + 1− i) + ci f (n + 1− i)),

λ
(n)
t,+ =

n

∑
i=0

Ki(t)λ2n−2i+1, λ
(n)
t,− =

∞

∑
i=n+1

Ki(t)λ2n−2i+1,

By using Equations (8) and (9), the gradations of the left-hand side of Equation (6) are derived as:

deg V(n)
+ =: (0, 1, 1) ≥ 0, deg

∂U
∂λ

λ
(n)
t,+ =: (2, 1, 1) ≥ 1, deg([U, V(n)

+ ]) =: (2, 1, 1; 0, 1, 1) ≥ 1,

which signifies that the minimum gradation of the left-hand side of Equation (6) is zero. Similarly,
the gradations of the right-hand side of Equation (6) are also obtained as follows:

deg V(n)
− =: (−2,−1,−1) ≤ −1, deg ∂U

∂λ λ
(n)
t,− =: (0,−1,−1) ≤ 0, deg([U, V(n)

− ]) =: (2, 1, 1;−2,−1,−1) ≤ 1,

which indicates that the maximum gradation of the right-hand side of Equation (6) is 1. By taking
these terms which have the gradations 0 and 1, one has

V(n)
−,x −

∂U
∂λ

λ
(n)
t,− − [U, V(n)

− ] = −bn+1 f (1)− cn+1e(1)− qcn+1h(0) + rbn+1h(0)− 2Kn+1(t)h(0),

that is,

−V(n)
+,x +

∂U
∂λ

λ
(n)
t,+ + [U, V(n)

+ ] = −bn+1 f (1)− cn+1e(1)− qcn+1h(0) + rbn+1h(0)− 2Kn+1(t)h(0). (12)

In what follows, we takes modified term 4n = −anh(0) so that, for V(n) = V(n)
+ − anh(0) to

obtain the non-isospectral integrable hierarchies, we have from Equation (13) that

−V(n)
x +

∂U
∂λ

λ
(n)
t,+ + [U, V(n)] = (−cn+1 + ran)e(1) + (−bn+1 + qan) f (1).
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Thus, Equation (7) admits the non-isospectral integrable hierarchy

utn =

(
q
r

)
tn

=

(
cn+1 − ran

bn+1 − qan

)
=

(
bnx − Kn(t)q
cnx − Kn(t)r

)

=

(
0 ∂

∂ 0

)(
cn

bn

)
− Kn(t)

(
q
r

)

=: J1

(
cn

bn

)
− Kn(t)

(
q
r

)
,

(13)

or

utn =

(
q
r

)
tn

=

(
r∂−1rbn+1 + (1− r∂−1q)cn+1 − 2rKn+1(t)x
−q∂−1qcn+1 + (1 + q∂−1r)bn+1 − 2qKn+1(t)x

)

=

(
1− r∂−1q r∂−1r
−q∂−1q 1 + q∂−1r

)(
cn+1

bn+1

)
+ 2Kn+1(t)x

(
−r
−q

)

=: J2

(
cn+1

bn+1

)
+ 2Kn+1(t)x

(
−r
−q

)
,

(14)

where

J1 =

(
0 ∂

∂ 0

)
, J2 =

(
1− r∂−1q r∂−1r
−q∂−1q 1 + q∂−1r

)
.

From Equation (11), we infer that(
cn+1

bn+1

)
=

(
−r∂−1r∂ ∂ + r∂−1q∂

∂− q∂−1r∂ q∂−1q∂

)(
cn

bn

)
+ Kn(t)

(
r∂−1(−q2 + r2)− q
q∂−1(−q2 + r2)− r

)
+ 2Kn+1(t)x

(
r
q

)

=: L

(
cn

bn

)
+ Kn(t)Q + 2Kn+1(t)xR,

(15)

where

L =

(
−r∂−1r∂ ∂ + r∂−1q∂

∂− q∂−1r∂ q∂−1q∂

)
, Q =

(
r∂−1(−q2 + r2)− q
q∂−1(−q2 + r2)− r

)
, R =

(
r
q

)
.

Therefore, Equation (13) can be written as

utn =

(
q
r

)
tn

= J1Ln

(
K0∂−1r
K0∂−1q

)
+ J1

n−1

∑
i=0

(LiKn−1−i(t)Q) + 2J1

n−1

∑
i=0

LiKn−i(t)xR− Kn(t)

(
q
r

)

=ΦnK0

(
q
r

)
+

n−1

∑
i=0

Φi J1Kn−1−i(t)Q + 2
n−1

∑
i=0

Kn−i(t)Φi∂

(
xq
xr

)
− Kn(t)

(
q
r

)
,

(16)

where

Φ = J1LJ−1
1 =

(
qx∂−1q + q2 ∂− qx∂−1r− qr

∂ + rx∂−1q + qr −rx∂−1r− r2

)
. (17)

When n = 1, the non-isospectral integrable hierarchy Equation (16) becomes{
qt = K1(2xqx + q),

rt = K1(2xrx + r).
(18)
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When n = 2, the non-isospectral integrable hierarchy Equation (16) reduces to{
qt = K1(q3x− qr2x + r + 2rxx)x + 2K2(qx)x + K2(2xqx + q),

rt = K1(−r3x + rq2x + q + 2qxx)x + K2(2xrx + r)
(19)

Furthermore, we focus on a format of Hamiltonian constructure of the hierarchy Equation (16)
via the trace identity proposed by Tu [9]. Denoting the trace of the square matrices A and B by
< A, B >= tr(AB).

Equations (8) and (9) admit that

< V,
∂U
∂q

>= −bλ2, < V,
∂U
∂r

>= cλ2, < V,
∂U
∂λ

>= crλ + 2aλ− bqλ,

which can be substituted into the trace identity

δ

δu
(< V,

∂U
∂λ

>) = λ−γ ∂

∂λ
λγ

(
< V, ∂U

∂q >

< V, ∂U
∂r >

)

gives rise to
δ

δu
(crλ + 2aλ− bqλ) = λ−γ ∂

∂λ

(
−bλ2+γ

cλ2+γ

)
. (20)

It follows that one can get the following equation by comparing the two sides of the above formula

δ

δu
(2an − qbn + rcn) = (2− 2n + γ)

(
−bn

cn

)
. (21)

Inserting the initial values of Equations (11) into (21), we obtain γ = 0. Hence, we have(
−bn

cn

)
=

δHn

δu
=

(
0 −1
1 0

)(
cn

bn

)
=: M1

(
cn

bn

)
,

where

Hn =
2ian − qbn − rcn

2n− 2
, M−1

1 =

(
0 1
−1 0

)
, M1 =

(
0 −1
1 0

)
.

Hence, the hierarchy Equations (13) and (14) can be written as

utn =

(
q
r

)
tn

= J1M−1
1

δHn

δu
− Kn(t)

(
q
r

)
= J2M−1

1
δHn+1

δu
+ 2Kn+1(t)x

(
−r
−q

)
. (22)

It is remarkable that, when Kn(t) = Kn+1(t) = 0, Equation (22) is the Hamiltonian structure of
the corresponding isospectral integrable hierarchy of Equation (16).

3. Discussion on Symmetries and Conserved Quatities

In this section, we consider the K symmetries and τ symmetries of the hierarchy Equation (16),
and obtain some conserved quantities of the hierarchy Equation (16) from the obtained symmetries.
The way to find K symmetries and τ symmetries comes from Li and Zhu [14], who applied the
isospectral and non-isospectral integrable AKNS hierarchy to construct K symmetries and τ symmetries
which constitute an infinite-dimensional Lie algebra. In the following, we show the specific process.

One can find that the Φ presented in Equation (17) satisfies

Φ′[Φ f ]g−Φ′[Φg] f = Φ{Φ′[ f ]g−Φ′[g] f },



Mathematics 2020, 8, 621 7 of 11

for ∀ f , g ∈ S. Therefore, Φ is the hereditary symmetry of Equation (16). In addition, we can also prove
the following relation holding:

Proposition 1.
Φ′[K0] = [K′0, Φ], (23)

where K0 =

(
qx

rx

)
= ut0 .

In fact,

Φ′[K0] = ∂

(
qx∂−1q + q∂−1qx −qx∂−1r− q∂−1rx

rx∂−1q + r∂−1qx −rx∂−1r− r∂−1rx

)
,

and thus

Φ′[K0] =

(
qxx∂−1q + (q2)x + qx∂−1qx −qxx∂−1r− (qr)x − qx∂−1rx

rxx∂−1q + (qr)x + rx∂−1qx −rxx∂−1r− (r2)x − rx∂−1rx

)
,

K′0Φ =

(
∂ 0
0 ∂

)(
qx∂−1q + q2 ∂− qx∂−1r− qr

∂ + rx∂−1q + qr −rx∂−1r− r2

)

=

(
qxx∂−1q + 3qqx + q2∂ ∂2 − qxx∂−1r− 2qxr− qrx − qr∂

∂2 + rxx∂−1q + 2rxq + rqx + qr∂ −rxx∂−1r− 3rrx − r2∂

)
.

ΦK′0 =

(
qx∂−1q∂ + q2∂ ∂2 − qx∂−1r∂− qr∂

∂2 + rx∂−1q∂ + qr∂ −rx∂−1r∂− r2∂

)
We therefore verified that Equation (23) is correct. Owing to the Φ is a hereditary symmetry, one finds

Φ′[Km] = [K′m, Φ],

which means Φ is a strong symmetry, where Km = Φm

(
qx

rx

)
.

Proposition 2.
Φ′[xu] + Φ(xu)′ − (xu)′Φ = HI, (24)

where u =

(
qx

rx

)
, H =

(
0 ∂

∂ 0

)
and I is an identity matrix.

In fact,

Φ′[xu] =

(
A B
C D

)
,

where 
A = qx∂−1q + xqxx∂−1q + 2xqxq + qx∂−1xqx,

B = −(qx∂−1r + xqxx∂−1r + xqxr + xqrx + qx∂−1xrx),

C = rx∂−1q + xrxx∂−1q + xrxq + xrqx + rx∂−1xqx,

D = −(rx∂−1r + xrxx∂−1r + 2xrxr + rx∂−1xrx).

Φ(xu)′ =

(
xq2∂ + xqqx − qx∂−1(q + xqx) −xqr∂ + ∂ + x∂2 − xrqx + qx∂−1(r + xrx)

xqr∂ + ∂ + x∂2 + xqrx − rx∂−1(q + xqx) −xr2∂− xrrx + rx∂−1(r + xrx)

)
,
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(xu)′Φ =

(
xqxx∂−1q + 3xqqx + xq2∂ x∂2 − xqxx∂−1r− 2xrqx − xqrx − xqr∂

x∂2 + xrxx∂−1q + 2xqrx + xrqx + xqr∂ −xrxx∂−1r− 3xrrx − xr2∂

)
,

where

(xu)′[σ] =
d
dε
|ε=0

(
x(q + εσ1)x

x(q + εσ2)x

)
= x∂

(
σ1

σ2

)
=⇒ (xu)′ =

(
x∂ 0
0 x∂

)
.

Thus, Equation (24) holds.

Proposition 3.
[K1, xu] = [Φu, xu] = Hu + K1, (25)

where u =

(
qx

rx

)
, H =

(
0 ∂

∂ 0

)
and K1 = Φu.

In fact,

Φu =

(
rxx +

1
2 qx(q2 − r2)− qrrx + q2qx

qxx +
1
2 rx(q2 − r2) + qrqx − r2rx

)
,

(Φu)′ =

(
1
2 (q

2 − r2)∂ + 3qqx + q2∂− rrx ∂2 − qr∂− (qr)x

∂2 + qr∂ + (qr)x
1
2 (q

2 − r2)∂− 3rrx − r2∂ + qqx

)
,

(Φu)′
(

xqx

xrx

)
=

(
1
2 (q

2 − r2)∂(xqx) + 3xqq2
x + q2∂(xqx)− xrrxqx + ∂2(xrx)− qr∂(xrx)− xrx(qr)x

∂2(xqx) + qr∂(xqx) + xqx(qr)x +
1
2 (q

2 − r2)∂(xrx)− 3xrr2
x − r2∂(xrx) + xrxqqx

)
,

Then, we have

(xu)′[Φu] =

(
x∂(rxx +

1
2 qx(q2 − r2)− qrrx + q2qx)

x∂(qxx +
1
2 rx(q2 − r2) + qrqx − r2rx)

)
,

[Φu, xu] = (Φu)′[xu]− (xu)′[Φu] =

(
0 ∂

∂ 0

)(
qx

rx

)
+

(
rxx +

1
2 qx(q2 − r2)− qrrx + q2qx

qxx +
1
2 rx(q2 − r2) + qrqx − r2rx

)
= Hu+K1.

We therefore verified that Equation (25) is correct.

Proposition 4.
[Km, Kn] = 0, m, n = 0, 1, 2, · · · (26)

where Km = Φmu, Kn = Φnu.

Proposition 5.
[Φmxu, xu] = mΦm−1(xu).

The proofs of Propositions 4 and 5 were presented in [23].
From the above results, one have

[Φmxu, Φnxu] = (m− n)Φm+n−1(xu), m = 0, 1, 2, · · · ; n = 0, 1, 2, · · · .

We can find that {Φnu, Φmxu} can not constitute a Lie algebra from Equation (25). However, {Φnu, n =

0, 1, 2, · · · } and {Φnxu, n = 0, 1, 2, · · · } constitute the infinite-dimensional Lie algebra, respectively based on
the above analysis.

Now, we will derive some conserved quantities of Tu isospectral hierarchy

utn =

(
q
r

)
tn

= Φn

(
qx

rx

)
. (27)
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Definition 1 ([14,16]). If we have known the integrable hierarchy ut = Kn(u), then the v satisfied the
following equation:

dv
dt

+ K′∗v = 0, (28)

which is called the conserved covariance, where K′ is the linearized operator of K, and K′∗ denotes a conjugate
operator of K′.

Proposition 6 ([13,16]). If σ is a symmetry of Equationut = Kn(u), v is its conserved covariance, then we have∫ ∞

−∞
vσdx =< v, σ >,

which is independent of time t, that is, d
dt < v, σ >= 0.

Definition 2 ([13,14,16]). If F′ f =< v, f >, for ∀ f ∈ S, then v is called the gradient of the functional F,
which is denoted by v = δF

δu .

Proposition 7 ([16]). If v′ = v′∗, then v is the gradient of the following functional

F =
∫ 1

0
< v(λu), u > dλ. (29)

According to the symbols above, we can deduce:

Proposition 8 ([13,14]). If I is a conserved quality of the hierarchy ut = Kn(u), and the conserved covariance
v satisfies

I′Kn =< v, Kn >,

then one has
∂I
∂t
+ < v, Kn >= 0,

that is,
∂v
∂t

+ K′∗n v + v′Kn = 0.

Therefore, we deduce the following conserved quantities related to the integrable hierarchy ut = Kn(u)

Im =
∫ 1

0
< ∂−1

x Km(λu), u > dλ. (30)

Moreover, a few conserved quantities are also derived for the integrable hierarchy Equation (27) as follows:

K0 = Φ0u =

(
qx

rx

)
=

(
0 1
−1 0

)(
−rx

qx

)
,

I0 =
∫ 1

0
< ∂−1

x K0(λu), u > dλ =
∫ 1

0
< [

(
0 −1
1 0

)(
qxλ

rxλ

)
]T ,

(
q
r

)
> dλ =

∫ ∞

−∞
(qxr− rxq)dx,

K1 = Φu =

(
rxx +

1
2 qx(q2 − r2)− qrrx + q2qx

qxx +
1
2 rx(q2 − r2) + qrqx − r2rx

)
=

(
0 1
−1 0

)(
−qxx − 1

2 rx(q2 − r2)− qrqx + r2rx

rxx +
1
2 qx(q2 − r2)− qrrx + q2qx

)
,

I1 =
∫ 1

0
< [

(
0 −1
1 0

)(
rxxλ + 1

2 qx(q2 − r2)λ3 − qrrxλ3 + q2qxλ3

qxxλ + 1
2 rx(q2 − r2)λ3 + qrqxλ3 − r2rxλ3

)
]T ,

(
q
r

)
> dλ

=
∫ ∞

−∞
[
1
2
(−qqxx + rrxx) +

1
8
(q2 − r2)(qxr− rxq)]dx,
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...

Ik =
∫ ∞

−∞
<

(
0 −1
1 0

)
Kk(λu),

(
q
r

)
> dλ.
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