j-Dimensional Integral Involving the Logarithmic and Exponential Functions: Derivation and Evaluation
Abstract
:1. Introduction
2. Definite Integral of the Contour Integral
3. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral
3.1. The Hurwitz–Lerch Zeta Function
3.2. Infinite Sum of the Contour Integral
4. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reynolds, R.; Stauffer, A. A Double Logarithmic Transform Involving the Exponential and Polynomial Functions Expressed in Terms of the Hurwitz–Lerch Zeta Function. Symmetry 2021, 13, 1983. [Google Scholar] [CrossRef]
- Jain, S.; Mehrez, K.; Baleanu, D.; Agarwal, P. Certain Hermite–Hadamard Inequalities for Logarithmically Convex Functions with Applications. Mathematics 2019, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Agarwal, R.P.; Ruzhansky, M. Special Functions and Analysis of Differential Equations, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 9 September 2020. [Google Scholar]
- Sekatskii, S.K.; Beltraminelli, S.; Merlini, D. On Equalities Involving Integrals of the Logarithm of the Riemann—Function with Exponential Weight Which Are Equivalent to the Riemann Hypothesis. Int. J. Anal. 2015, 2015, 980728. [Google Scholar] [CrossRef] [Green Version]
- Wiener, N. The homogeneous chaos. Am. J. Math. 1938, 60, 897–936. [Google Scholar] [CrossRef]
- Kiyosi, I.T.Ô. Multiple Wiener Integral. J. Math. Soc. Jpn. 1951, 3, 157–169. [Google Scholar] [CrossRef]
- Olver, F.W.J. Asymptotics and Special Functions; A. K. Peters: Wellesley, MA, USA, 1997. [Google Scholar]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Definite Integral of Exponential Polynomial and Hyperbolic Function in terms of the Incomplete Gamma Function. Eur. J. Pure Appl. Math. 2021, 14, 1295–1305. [Google Scholar] [CrossRef]
- Laurincikas, A.; Garunkstis, R. The Lerch Zeta-Function; Springer Science & Business Media: Dordrecht, The Netherlands, 11 December 2013; 189p. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Harrison, M.; Waldron, P. Mathematics for Economics and Finance; Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; With 1 CD-ROM (Windows, Macintosh and UNIX), MR 2723248 (2012a:33001); U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Lewin, L. Polylogarithms and Associated Functions; North-Holland Publishing Co.: New York, NY, USA, 1981. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. j-Dimensional Integral Involving the Logarithmic and Exponential Functions: Derivation and Evaluation. Symmetry 2022, 14, 280. https://doi.org/10.3390/sym14020280
Reynolds R, Stauffer A. j-Dimensional Integral Involving the Logarithmic and Exponential Functions: Derivation and Evaluation. Symmetry. 2022; 14(2):280. https://doi.org/10.3390/sym14020280
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2022. "j-Dimensional Integral Involving the Logarithmic and Exponential Functions: Derivation and Evaluation" Symmetry 14, no. 2: 280. https://doi.org/10.3390/sym14020280
APA StyleReynolds, R., & Stauffer, A. (2022). j-Dimensional Integral Involving the Logarithmic and Exponential Functions: Derivation and Evaluation. Symmetry, 14(2), 280. https://doi.org/10.3390/sym14020280