Ulam Stability of a General Linear Functional Equation in Modular Spaces
Abstract
1. Introduction
- (i)
- for;
- (ii)
- ;
- (iii)
- forand.
2. Preliminaries
- M1.
- if and only if;
- M2.
- for everywith;
- M3.
- for everywith.If we replace condition M3 with the following one:
- M4.
- for everywith,
- (a)
- If is a modular on Y and , then the function is non-decreasing, i.e., for every with (it is enough to take in M3).
- (b)
- For a convex modular on Y, we have for all and with and, moreover,for all and with .
- (i)
- is ρ-convergent to a point(which we denote by), ifas;
- (ii)
- is ρ-Cauchy if for any, we havefor sufficiently large;
- (iii)
- is said to be ρ-complete if every ρ-Cauchy sequence inis ρ-convergent.
- (iv)
- A subsetis called ρ-closed if C contains everysuch that there is a sequencein C which is ρ-convergent to x.
3. Stability of Equation (5)
- (1)
- Every constant function satisfies condition (7).
- (2)
- If satisfy (7), then so does the function for any fixed scalars , .
- (3)
- Consider the situation in Corollary 1 (i.e., when Equation (5) has the form (20)). Then, condition (7) has the formIt is easy to check that, for every , the function , given byis a solution to Equation (24). In particular, if D is symmetric and biadditive, then (25) holds with for . Thus, Equation (24) holds for every symmetric and biadditive function .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Khodaei, H. On the hyperstability of (m,n)-derivations. Fixed Point Theory 2017, 18, 641–650. [Google Scholar] [CrossRef][Green Version]
- Kim, H.-M.; Shin, W.-Y. Approximate Lie*-derivations on ρ-complete convex modular algebras. J. Appl. Anal. Comput. 2019, 9, 765–776. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Shah, S.O.; Tunç, C.; Rizwan, R.; Zada, A.; Khan, Q.U.; Ullah, I.; Ullah, I. Bielecki–Ulam’s Types Stability Analysis of Hammerstein and Mixed Integro–Dynamic Systems of Non–Linear Form with Instantaneous Impulses on Time Scales. Qual. Theory Dyn. Syst. 2022, 21, 107. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023, 117, 12. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. On stability of the general linear equation. Aequat. Math. 2015, 89, 1461–1474. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aequat. Math. 2016, 90, 527–540. [Google Scholar] [CrossRef][Green Version]
- Brzdęk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungarica 2013, 141, 58–67. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003, 4, 4. [Google Scholar]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Forti, G.L. Elementary remarks on Ulam-Hyers stability of linear functional equations. J. Math. Anal. Appl. 2007, 328, 109–118. [Google Scholar] [CrossRef]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality, 2nd ed.; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Jung, S.-M.; Rassias, M.T. A linear functional equation of third order associated to the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 137468. [Google Scholar] [CrossRef]
- Jung, S.-M.; Popa, D.; Rassias, M.T. On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 2014, 59, 165–171. [Google Scholar] [CrossRef]
- Lee, Y.W. On the stability on a quadratic Jensen type functional equation. J. Math. Anal. Appl. 2002, 270, 590–601. [Google Scholar] [CrossRef]
- Lee, Y.W. Stability of a generalized quadratic functional equation with Jensen type. Bull. Korean Math. Soc. 2005, 42, 57–73. [Google Scholar] [CrossRef][Green Version]
- Mortici, C.; Rassias, M.T.; Jung, S.-M. On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. 2014, 2014, 546046. [Google Scholar] [CrossRef]
- Pales, Z. Generalized stability of the Cauchy functional equation. Aequat. Math. 1998, 56, 222–232. [Google Scholar] [CrossRef]
- Park, C. Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A fixed-point approach. Fixed Point Theory Appl. 2008, 2008, 493751. [Google Scholar] [CrossRef]
- Patel, B.M.; Patel, A.B. Stability of Quartic functional equations in 2-Banach space. Int. J. Math. Anal. 2013, 7, 1097–1107. [Google Scholar] [CrossRef]
- Pinelas, S.; Govindan, V.; Tamilvanan, K. Stability of Cubic Functional Equation in Random Normed Space. J. Adv. Math. 2018, 14. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Stability of the Drygas functional equation on restricted domain. Results Math. 2015, 68, 11–24. [Google Scholar] [CrossRef][Green Version]
- Smajdor, W. Note on a Jensen type functional equation. Publ. Math. Debrecen 2003, 63, 703–714. [Google Scholar]
- Trif, T. Hyers-Ulam-Rassias stability of a Jensen type functional equation. J. Math. Anal. Appl. 2000, 250, 579–588. [Google Scholar] [CrossRef][Green Version]
- Benzarouala, C.; Oubbi, L. A purely fixed-point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. In Ulam Type Stability; Brzdęk, J., Popa, D., Rassias, T.M., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 47–56. [Google Scholar]
- Phochai, T.; Saejung, S. The hyperstability of general linear equation via that of Cauchy equation. Aequat. Math. 2019, 93, 781–789. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. Hyperstability of generalized linear functional equations in several variables. Bull. Austral. Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Zhang, D. On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. Aequat. Math. 2016, 90, 559–568. [Google Scholar] [CrossRef]
- Brzdęk, J.; Leśniak, Z.; Malejki, R. On the generalized Fréchet functional equation with constant coefficients and its stability. Aeq. Math. 2018, 92, 355–373. [Google Scholar] [CrossRef]
- Brzdęk, J.; Leśniak, Z.; Malejki, R. On the stability of a generalized Fréchet functional equation with respect to hyperplanes in the parameter space. Symmetry 2021, 13, 384. [Google Scholar] [CrossRef]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed-point approach. Aequat. Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; Jabłońska, E.; Malejki, R. Ulam’s stability of a generalization of the Fréchet functional equation. J. Math. Anal. Appl. 2016, 442, 537–553. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdęk, J.; El-hady, E.-S.; Leśniak, Z. On Ulam stability of functional equations in 2-normed spaces—A survey. Symmetry 2021, 13, 2200. [Google Scholar] [CrossRef]
- Brzdęk, J.; El-hady, E.-S. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar]
- Brzdęk, J.; Karapınar, E.; Petruşel, A. A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 2018, 467, 501–520. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Raşa, I. Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 2017, 453, 620–628. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Park, C.; Palani, P.; Kumar, T.R.K. Stability of an additive-quartic functional equation in modular spaces. J. Math. Comput. SCI-JM 2022, 26, 22–40. [Google Scholar] [CrossRef]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen: Tokyo, Japan, 1950. [Google Scholar]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 1959, 7, 661–668. [Google Scholar]
- Ramdoss, M.; Pachaiyappan, D.; Hwang, I.; Park, C. Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Math. 2020, 5, 5903–5915. [Google Scholar] [CrossRef]
- Sadeghi, G. A fixed-point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. 2014, 37, 333–344. [Google Scholar]
- Wongkum, K.; Chaipunya, P.; Kumam, P. On the Generalized Ulam-Hyers-Rassias Stability of Quadratic Mappings in Modular Spaces without Δ-Conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Khamsi, M.A. Quasicontraction mappings in modular spaces without δ2-condition. Fixed Point Theory Appl. 2008, 2008, 916187. [Google Scholar] [CrossRef]
- Wongkum, K.; Kumam, P.; Cho, Y.J.; Thounthong, P.; Chaipunya, P. On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl. 2017, 10, 1399–1406. [Google Scholar] [CrossRef]
- Hajji, A. Modular spaces topology. Appl. Math. 2013, 4, 1296–1300. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboutaib, I.; Benzarouala, C.; Brzdęk, J.; Leśniak, Z.; Oubbi, L. Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry 2022, 14, 2468. https://doi.org/10.3390/sym14112468
Aboutaib I, Benzarouala C, Brzdęk J, Leśniak Z, Oubbi L. Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry. 2022; 14(11):2468. https://doi.org/10.3390/sym14112468
Chicago/Turabian StyleAboutaib, Issam, Chaimaa Benzarouala, Janusz Brzdęk, Zbigniew Leśniak, and Lahbib Oubbi. 2022. "Ulam Stability of a General Linear Functional Equation in Modular Spaces" Symmetry 14, no. 11: 2468. https://doi.org/10.3390/sym14112468
APA StyleAboutaib, I., Benzarouala, C., Brzdęk, J., Leśniak, Z., & Oubbi, L. (2022). Ulam Stability of a General Linear Functional Equation in Modular Spaces. Symmetry, 14(11), 2468. https://doi.org/10.3390/sym14112468

