Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM
Abstract
:1. Introduction
2. Preliminaries
2.1. Q-Rung Orthopair Fuzzy Sets
- (i)
- (ii)
- if and only if and
- (iii)
- if and only if and
- (iv)
- (v)
2.2. Hausdorff Metric
3. Measures of the Distance and Similarity between q-ROFSs Based on the Hausdorff Metric
3.1. A Distance for q-ROFSs Based on the Hausdorff Metric
- : Since and are two q-ROFSs on , given by Equation (6), is obviously positive, i.e., . On the other hand, is defined by its normalization with . Thus, the result is proved.
- : If , then for every we have and , and so . Conversely, if , then for every we have and so and . Thus, we obtain , and the result is proved.
- : It is obvious that holds because, for each and are held. Thus, the result is proved.
- : If , then we have and for each Thus, we can obtain and We consider the following two cases:
- If then However, we have and On the other hand, we have and By combining the above inequalities, we can obtain and Hence, we have and We next consider the second case.
- If , then However, we have and On the other hand, we have and Based on the previous inequalities, we have and Hence, we have and Therefore, the cases (i) and (ii) complete the verification of the result .
- : For any three q-ROFSs on with membership functions and non-memberships functions , respectively, we also consider the following two cases:
- If then we have , and Similarly, we have the following second case:
- If , then , and Thus, we have Based on the two cases (i) and (ii), we prove the triangle inequality result . □
3.2. Similarity Measures for q-ROFSs Based on the Hausdorff Distance
4. Examples and Comparisons
4.1. Pattern Recognition
4.2. Queries with Fuzzy Linguistic Variables
4.3. Comparison Analysis
5. Application to Multi-Criteria Decision Making Related to Daily Life
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Chaomurilige, J.; Yu, J.; Yang, M.S. Analysis of parameter selection for Gustafson-Kessel fuzzy clustering using Jacobian matrix. IEEE Trans. Fuzzy Syst. 2015, 23, 2329–2342. [Google Scholar] [CrossRef]
- Lu, K.P.; Chang, S.T.; Yang, M.S. Change-point detection for shifts in control charts using fuzzy shift change-point algorithms. Comput. Ind. Eng. 2016, 93, 12–27. [Google Scholar] [CrossRef]
- Ziemba, P. Multi-criteria approach to stochastic and fuzzy uncertainty in the selection of electric vehicles with high social acceptance. Expert Syst. Appl. 2021, 173, 114686. [Google Scholar] [CrossRef]
- Zwick, R.; Carlstein, E.; Budescu, D.V. Measures of similarity among fuzzy concepts: A comparative analysis. Int. J. Approx. Reason. 1987, 1, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Pappis, C.P.; Karacapilidis, N.I. A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst. 1993, 56, 171–174. [Google Scholar] [CrossRef]
- Wang, W.J. New similarity measures on fuzzy sets and on elements. Fuzzy Sets Syst. 1997, 85, 305–309. [Google Scholar] [CrossRef]
- Candan, K.S.; Li, W.S.; Priya, M.L. Similarity-based ranking and query processing in multimedia databases. Data Knowl. Eng. 2000, 35, 259–298. [Google Scholar] [CrossRef]
- Grzegorzewski, P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst. 2004, 148, 319–328. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets: Theory and Applications; Physica-Verlag: Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Hwang, C.M.; Yang, M.S. New construction for similarity measures between intuitionistic fuzzy sets based on lower, upper and middle fuzzy sets. Int. J. Fuzzy Syst. 2013, 15, 359–366. [Google Scholar]
- Garg, H.; Kaur, J. A novel (R,S)-norm entropy measure of intuitionistic fuzzy sets and its applications in multi-attribute decision-making. Mathematics 2018, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.S.; Hussian, Z.; Ali, M. Belief and plausibility measures on intuitionistic fuzzy sets with construction of belief-plausibility TOPSIS. Complexity 2020, 2020, 7849686. [Google Scholar] [CrossRef]
- Gong, Z.; Fan, L. Three-way multi-attribute decision making based on outranking relations under intuitionistic fuzzy environments. Symmetry 2021, 13, 1384. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Martínez, L.; Torra, V.; Xu, Z.S.; Herrera, F. Hesitant fuzzy sets: State of arts and future directions. Int. J. Intell. Syst. 2014, 29, 495–524. [Google Scholar] [CrossRef]
- Xu, Z.S.; Xia, M.M. Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 2011, 181, 2128–2138. [Google Scholar] [CrossRef]
- Hussian, Z.; Yang, M.S. Entropy for hesitant fuzzy sets based on Hausdorff metric with construction of hesitant fuzzy TOPSIS. Int. J. Fuzzy Syst. 2018, 20, 2517–2533. [Google Scholar] [CrossRef]
- Yang, M.S.; Hussian, Z. Distance and similarity measures of hesitant fuzzy sets based on Hausdorff metric with applications to multi-criteria decision making and clustering. Soft Comput. 2019, 23, 5835–5848. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, J.; Miao, R.; Zhou, L. Novel distance and similarity measures on Hesitant fuzzy linguistic term sets with application to pattern recognition. J. Intell. Fuzzy Syst. 2019, 37, 2981–2990. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2013, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X. A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 2016, 31, 593–611. [Google Scholar] [CrossRef]
- Biswas, A.; Sarkar, B. Pythagorean fuzzy multicriteria group decision making through similarity measure based on point operators. Int. J. Intell. Syst. 2018, 33, 1731–1744. [Google Scholar] [CrossRef]
- Hussain, A.; Ullah, K.; Alshahrani, M.N.; Yang, M.S.; Pamucar, D. Novel Aczel-Alsina operators for Pythagorean fuzzy sets with application in multi-attribute decision making. Symmetry 2022, 14, 940. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Yager, R.R.; Alajlan, N.; Bazi, Y. Aspects of generalized orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2154–2174. [Google Scholar] [CrossRef]
- Peng, X.; Liu, L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1795–1834. [Google Scholar] [CrossRef]
- Yang, M.S.; Ali, Z.; Mahmood, T. Three-way decisions based on q-rung orthopair fuzzy 2-tuple linguistic sets with generalized Maclaurin symmetric mean operators. Mathematics 2021, 9, 1387. [Google Scholar] [CrossRef]
- Joshi, B.P.; Singh, A.; Bhatt, P.K.; Vaisla, K.S. Interval valued q-rung orthopair fuzzy sets and their properties. J. Intell. Fuzzy Syst. 2018, 35, 5225–5230. [Google Scholar] [CrossRef]
- Joshi, B.P.; Gegov, A. Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems. Int. J. Intell. Syst. 2020, 35, 125–149. [Google Scholar] [CrossRef]
- Pinar, A.; Boran, F.E. A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. Int. J. Mach. Learn. Cybern. 2020, 11, 1749–1780. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Wei, G.; Wei, C. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications. Mathematics 2019, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chen, X.; Peng, D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1572–1587. [Google Scholar] [CrossRef]
- Farhadinia, B.; Effati, S.; Chiclana, F. A family of similarity measures for q-rung orthopair fuzzy sets and their applications to multiple criteria decision making. Int. J. Intell. Syst. 2021, 36, 1535–1559. [Google Scholar] [CrossRef]
- Nalder, J.S. Hyperspaces of Sets. N. Y. Marcel Dekker 1978, 49, 635–663. [Google Scholar]
- Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Olson, C.F. A probabilistic formulation for Hausdorff matching. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), Santa Barbara, CA, USA, 25 June 1998; pp. 150–156. [Google Scholar]
- Hussian, Z.; Yang, M.S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS. Int. J. Intell. Syst. 2019, 34, 2633–2654. [Google Scholar] [CrossRef]
- Tahani, V. A conceptual framework for fuzzy query processing—A step toward very intelligent database systems. Inf. Process. Manag. 1977, 13, 289–303. [Google Scholar] [CrossRef]
- Kacprzyk, J.; Ziolkowski, A. Database queries with fuzzy linguistic quantifiers. IEEE Trans. Syst. Man Cybern. 1986, 16, 474–479. [Google Scholar] [CrossRef]
- Petry, F.E. Fuzzy Database: Principles and Applications; Kluwer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Gomes, L.F.A.M.; Lima, M.M.P.P. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1992, 16, 113–127. [Google Scholar]
- Trotta, L.T.F.; Nobre, F.F.; Gomes, L.F.A.M. Multi-criteria decision making-An approach to setting priorities in health care. Stat. Med. 1999, 18, 3345–3354. [Google Scholar]
- Gomes, L.F.A.M.; Rangel, L.A.D. An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur. J. Oper. Res. 2009, 193, 204–211. [Google Scholar] [CrossRef]
L. | M.L.L. | V.L | V.V.L. | |
---|---|---|---|---|
L. | 1.000(9) 1.000(10) 1.000(11) | 0.8358(9) 0.7179(10) 0.7640(11) | 0.8259(9) 0.7034(10) 0.7472(11)s | 0.7456(9) 0.5944(10) 0.6446(11) |
M.L.L. | 0.8358(9) 0.7179(10) 0.7640(11) | 1.000(9) 1.000(10) 1.000(11) | 0.6618(9) 0.4945(10) 0.5461(11) | 0.5815(9) 0.4099(10) 0.4591(11) |
V.L | 0.8259(9) 0.7034(10) 0.7472(11)s | 0.6618(9) 0.4945(10) 0.5461(11) | 1.000(9) 1.000(10) 1.000(11) | 0.9151(9) 0.8435(10) 0.8712(11) |
V.V.L. | 0.7456(9) 0.5944(10) 0.6446(11) | 0.5815(9) 0.4099(10) 0.4591(11) | 0.9151(9) 0.8435(10) 0.8712(11) | 1.000(9) 1.000(10) 1.000(11) |
1 | (0.9, 0.5) | (0.8, 0.6) | (0.7, 0.5) | (0.6, 0.6) | (0.8, 0.8) |
2 | (0.7, 0.7) | (0.9, 0.3) | (0.6, 0.3) | (0.7, 0.9) | (0.5, 0.7) |
3 | (0.8, 0.5) | (0.7, 0.5) | (0.5, 0.6) | (0.5, 0.7) | (0.7, 0.7) |
4 | (0.6, 0.6) | (0.9, 0.5) | (0.8, 0.6) | (0.7, 0.5) | (0.8, 0.6) |
5 | (0.8, 0.6) | (0.7, 0.7) | (0.9, 0.5) | (0.8, 0.5) | (0.7, 0.7) |
w1 | w2 | w3 | w4 | w5 | |
---|---|---|---|---|---|
max/min | 0.229 | 0.203 | 0.203 | 0.171 | 0.195 |
w1r | w2r | w3r | w4r | w5r | |
---|---|---|---|---|---|
wjr | 1.000 | 0.886 | 0.886 | 0.747 | 0.852 |
1 | 0.000 | 0.375 | 0.423 | 0.334 | 0.423 |
2 | −0.375 | 0.000 | −0.423 | 0.000 | −0.436 |
3 | −0.423 | 0.423 | 0.000 | 0.401 | 0.456 |
4 | −0.334 | 0.000 | −0.401 | 0.000 | −0.401 |
5 | −0.423 | 0.436 | −0.456 | 0.401 | 0.000 |
1 | 0.000 | −0.450 | 0.401 | −0.450 | 0.401 |
2 | 0.389 | 0.000 | 0.353 | 0.374 | 0.353 |
3 | −0.463 | −0.398 | 0.000 | −0.398 | 0.398 |
4 | 0.398 | −0.477 | 0.352 | 0.000 | 0.353 |
5 | −0.463 | −0.398 | −0.449 | −0.398 | 0.000 |
1 | 0.000 | 0.421 | 0.398 | −0.463 | −0.398 |
2 | −0.475 | 0.000 | 0.405 | −0.426 | −0.355 |
3 | −0.449 | −0.458 | 0.000 | −0.398 | −0.320 |
4 | 0.410 | 0.378 | 0.352 | 0.000 | −0.450 |
5 | 0.353 | 0.314 | 0.283 | 0.398 | 0.000 |
1 | 0.000 | 0.288 | 0.386 | −0.517 | −0.464 |
2 | −0.368 | 0.000 | −0.434 | −0.348 | −0.348 |
3 | −0.517 | 0.324 | 0.000 | −0.434 | −0.433 |
4 | 0.386 | 0.360 | 0.324 | 0.000 | −0.433 |
5 | 0.347 | 0.260 | 0.323 | 0.297 | 0.000 |
1 | 0.000 | 0.346 | 0.000 | −0.435 | 0.000 |
2 | −0.406 | 0.000 | −0.406 | −0.406 | −0.406 |
3 | 0.000 | 0.346 | 0.000 | −0.472 | 0.000 |
4 | 0.370 | 0.346 | 0.402 | 0.000 | −0.402 |
5 | 0.000 | 0.346 | 0.000 | −0.472 | 0.000 |
1 | 0.000 | 0.318 | 0.383 | 0.271 | 0.383 |
2 | −0.318 | 0.000 | −0.383 | 0.000 | −0.403 |
3 | −0.383 | 0.383 | 0.000 | 0.352 | 0.436 |
4 | −0.271 | 0.000 | −0.352 | 0.000 | −0.352 |
5 | −0.383 | 0.403 | −0.436 | 0.352 | 0.000 |
1 | 0.000 | −0.407 | 0.379 | −0.407 | 0.379 |
2 | 0.361 | 0.000 | 0.299 | 0.400 | 0.299 |
3 | −0.428 | −0.338 | 0.000 | −0.338 | 0.361 |
4 | 0.361 | −0.452 | 0.299 | 0.000 | 0.299 |
5 | −0.428 | −0.338 | −0.408 | −0.338 | 0.000 |
1 | 0.000 | 0.396 | 0.361 | −0.428 | −0.338 |
2 | −0.441 | 0.000 | 0.372 | −0.374 | −0.288 |
3 | −0.408 | −0.419 | 0.000 | −0.338 | −0.252 |
4 | 0.379 | 0.332 | 0.299 | 0.000 | −0.407 |
5 | 0.299 | 0.255 | 0.224 | 0.361 | 0.000 |
1 | 0.000 | 0.235 | 0.364 | −0.487 | −0.408 |
2 | −0.314 | 0.000 | −0.368 | −0.275 | −0.275 |
3 | −0.487 | 0.275 | 0.000 | −0.368 | −0.368 |
4 | 0.364 | 0.205 | 0.275 | 0.000 | −0.467 |
5 | 0.305 | 0.205 | 0.275 | 0.348 | 0.000 |
1 | 0.000 | 0.293 | 0.000 | −0.382 | 0.000 |
2 | −0.344 | 0.000 | −0.345 | −0.344 | −0.345 |
3 | 0.000 | 0.293 | 0.000 | −0.437 | 0.000 |
4 | 0.325 | 0.293 | 0.372 | 0.000 | 0.372 |
5 | 0.000 | 0.293 | 0.000 | −0.437 | 0.000 |
1 | 0.000 | 0.336 | 0.398 | 0.289 | 0.398 |
2 | −0.336 | 0.000 | −0.397 | 0.000 | −0.415 |
3 | −0.398 | 0.397 | 0.000 | 0.369 | 0.444 |
4 | −0.289 | 0.000 | −0.369 | 0.000 | −0.369 |
5 | −0.398 | 0.415 | −0.444 | 0.369 | 0.000 |
1 | 0.000 | −0.422 | 0.391 | −0.422 | 0.391 |
2 | 0.374 | 0.000 | 0.316 | 0.410 | 0.316 |
3 | −0.441 | −0.357 | 0.000 | −0.357 | 0.374 |
4 | 0.374 | −0.416 | 0.316 | 0.000 | 0.316 |
5 | −0.441 | −0.357 | −0.422 | −0.357 | 0.000 |
1 | 0.000 | 0.405 | 0.375 | −0.441 | −0.357 |
2 | −0.458 | 0.000 | 0.384 | −0.392 | −0.307 |
3 | −0.422 | −0.434 | 0.000 | −0.356 | −0.270 |
4 | 0.391 | 0.347 | 0.316 | 0.000 | −0.422 |
5 | 0.316 | 0.272 | 0.239 | 0.374 | 0.000 |
1 | 0.000 | 0.247 | 0.372 | −0.498 | −0.427 |
2 | −0.331 | 0.000 | −0.389 | −0.294 | −0.294 |
3 | −0.498 | 0.290 | 0.000 | −0.389 | −0.388 |
4 | 0.372 | 0.219 | 0.290 | 0.000 | −0.480 |
5 | 0.319 | 0.219 | 0.290 | 0.359 | 0.000 |
1 | 0.000 | 0.309 | 0.000 | −0.399 | 0.000 |
2 | −0.363 | 0.000 | −0.364 | −0.363 | −0.363 |
3 | 0.000 | 0.309 | 0.000 | −0.450 | 0.000 |
4 | 0.341 | 0.309 | 0.383 | 0.000 | 0.383 |
5 | 0.000 | 0.309 | 0.000 | −0.450 | 0.000 |
1 | 0.000 | 0.980 | 1.617 | −1.531 | −0.029 |
2 | −1.244 | 0.000 | −0.505 | −0.806 | −1.192 |
3 | −1.852 | 0.273 | 0.000 | −1.301 | 0.101 |
4 | 1.230 | 0.507 | 1.029 | 0.000 | −0.600 |
5 | −0.186 | 0.958 | −0.299 | 0.226 | 0.000 |
1 | 0.000 | 0.835 | 1.487 | −1.433 | 0.016 |
2 | −1.056 | 0.000 | −0.425 | −0.593 | −1.012 |
3 | −1.706 | 0.194 | 0.000 | −1.129 | 0.177 |
4 | 1.158 | 0.378 | 0.893 | 0.000 | −0.555 |
5 | −0.207 | 0.818 | −0.345 | 0.286 | 0.000 |
1 | 0.000 | 0.875 | 1.535 | −1.471 | 0.005 |
2 | −1.114 | 0.000 | −0.450 | −0.639 | −1.064 |
3 | −1.759 | 0.205 | 0.000 | −1.183 | 0.160 |
4 | 1.189 | 0.414 | 0.936 | 0.000 | −0.572 |
5 | −0.204 | 0.858 | −0.337 | 0.295 | 0.000 |
Ψi | Ψi | Ψi | |||
---|---|---|---|---|---|
1 | 0.8091 | 1 | 0.7100 | 1 | 0.8045 |
2 | 0.000 | 2 | 0.000 | 2 | 0.000 |
3 | 0.1637 | 3 | 0.1106 | 3 | 0.1318 |
4 | 1.0000 | 4 | 1.0000 | 4 | 1.0000 |
5 | 0.7519 | 5 | 0.6472 | 5 | 0.7411 |
Similarities | Ranking |
---|---|
l | 4 > 1 > 5 > 3 > 2 |
r | 4 > 1 > 5 > 3 > 2 |
e | 4 > 1 > 5 > 3 > 2 |
1 | 0.000 | 0.194 | 0.232 | 0.151 | 0.196 |
2 | −0.423 | 0.000 | −0.464 | 0.000 | −0.436 |
3 | −0.464 | 0.199 | 0.000 | 0.177 | 0.456 |
4 | −0.383 | 0.000 | −0.446 | 0.000 | −0.446 |
5 | −0.464 | 0.196 | −0.456 | 0.177 | 0.000 |
1 | 0.000 | −0.464 | 0.199 | −0.464 | 0.200 |
2 | 0.200 | 0.000 | 0.353 | 0.192 | 0.158 |
3 | −0.462 | −0.398 | 0.000 | −0.423 | 0.196 |
4 | 0.212 | −0.488 | 0.182 | 0.000 | 0.165 |
5 | −0.474 | −0.398 | −0.464 | −0.390 | 0.000 |
1 | 0.000 | 0.165 | 0.199 | −0.462 | −0.423 |
2 | −0.384 | 0.000 | 0.197 | −0.419 | −0.368 |
3 | −0.464 | −0.458 | 0.000 | −0.464 | −0.333 |
4 | 0.211 | 0.181 | 0.199 | 0.000 | −0.452 |
5 | 0.194 | 0.158 | 0.299 | 0.191 | 0.000 |
1 | 0.000 | 0.165 | 0.205 | −0.469 | −0.447 |
2 | −0.384 | 0.000 | −0.390 | −0.349 | −0.349 |
3 | −0.481 | 0.168 | 0.000 | −0.434 | −0.390 |
4 | 0.215 | 0.151 | 0.187 | 0.000 | −0.466 |
5 | 0.204 | 0.151 | 0.168 | 0.187 | 0.000 |
1 | 0.000 | 0.169 | 0.000 | −0.447 | 0.000 |
2 | −0.398 | 0.000 | −0.413 | −0.424 | −0.464 |
3 | 0.000 | 0.198 | 0.000 | −0.474 | 0.000 |
4 | 0.204 | 0.180 | 0.204 | 0.000 | 0.181 |
5 | 0.000 | 0.196 | 0.000 | −0.457 | 0.000 |
1 | 0.000 | 0.229 | 0.835 | −1.691 | −0.474 |
2 | −1.389 | 0.000 | −0.717 | −1.000 | −1.459 |
3 | −1.871 | −0.291 | 0.000 | −1.625 | 0.071 |
4 | 0.459 | 0.024 | 0.326 | 0.000 | −1.018 |
5 | −0.544 | −0.303 | −0.462 | −0.292 | 0.000 |
Ψi | 0.7950 | 0.0000 | 0.1949 | 1.0000 | 0.6804 |
Similarity | Ranking |
---|---|
l | 4 > 1 > 5 > 3 > 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, Z.; Abbas, S.; Yang, M.-S. Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM. Symmetry 2022, 14, 2467. https://doi.org/10.3390/sym14112467
Hussain Z, Abbas S, Yang M-S. Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM. Symmetry. 2022; 14(11):2467. https://doi.org/10.3390/sym14112467
Chicago/Turabian StyleHussain, Zahid, Sahar Abbas, and Miin-Shen Yang. 2022. "Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM" Symmetry 14, no. 11: 2467. https://doi.org/10.3390/sym14112467
APA StyleHussain, Z., Abbas, S., & Yang, M.-S. (2022). Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM. Symmetry, 14(11), 2467. https://doi.org/10.3390/sym14112467