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Abstract: Using the direct method, we prove the Ulam stability results for the general linear functional
equation of the form ∑m

i=1 Ai( f ( ϕi(x̄))) = D(x̄) for all x̄ ∈ Xn, where f is the unknown mapping
from a linear space X over a field K ∈ {R,C} into a linear space Y over field K; n and m are positive
integers; ϕ1, . . . , ϕm are linear mappings from Xn to X; A1, . . . , Am are continuous endomorphisms
of Y; and D : Xn → Y is fixed . In this paper, the stability inequality is considered with regard to
a convex modular on Y, which is lower semicontinuous and satisfies an additional condition (the
∆2-condition). Our main result generalizes many similar stability outcomes published so far for
modular space. It also shows that there is some kind of symmetry between the stability results for
equations in modular spaces and those in classical normed spaces .

Keywords: Ulam stability; direct method; general linear functional equation; modular space

MSC: 39B62; 39B82; 46A80; 47J20

1. Introduction

In 1940, S. M. Ulam (cf. [1]) posed the stability problem for the functional equation
of group homomorphisms. Quite soon, Hyers [2] provided the affirmative answer to this
problem in real Banach spaces by using the approach that has subsequently been called
the direct method. After that, the problem of the stability of various types of equations
(not only functional ones) was extensively studied by many authors (see [3–10] for various
types of information; examples; and further references).

For instance, in 2015, Bahyrycz and Olko [11] (see also [12]) published stability results
for the following general functional equation:

m

∑
i=1

Bi f

(
n

∑
j=1

bijxj

)
+ B = 0, (1)

where f is the unknown mapping from a linear space X over K ∈ {R,C} into a Banach
space Y over K, Bi and bij are scalars, and B is a vector from Y. They used the fixed-point
approach suggested in [13]. It should be mentioned that the application of fixed-point
methods in Ulam stability was initiated in [14,15]. The result reads as follows.
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Theorem 1. Let B ∈ Y be fixed and assume that either
(

∑m
i=1 Bi

)
B 6= 0 or B = 0. Let g : X → Y

and θ : Xn → [0, ∞) satisfy the inequality

∥∥∥ m

∑
i=1

Big

(
n

∑
j=1

bijxj

)
+ B

∥∥∥ ≤ θ(x1, . . . , xn), x1, . . . , xn ∈ X. (2)

Further, assume that ∅ 6= I ⊂ {1, . . . , m}, I0 := {1, . . . , m} \ I 6= ∅, c1, . . . , cn ∈ K and
ω1, . . . , ωn ∈ [0, ∞) exist such that

(i) ∑n
j=1 aijcj = 1 for i ∈ I;

(ii) ∑i∈I0
|Bi|ωi < |∑i∈I Bi|;

(iii) θ
((

∑n
j=1 bijcj

)
x1, . . . ,

(
∑n

j=1 bijcj

)
xn)
)
≤ ωiθ(x1, . . . , xn) for i ∈ I0 and x1, . . . , xn ∈

X.

Then, there is a unique solution G : X → Y to functional Equation (1) with

‖g(x)− G(x)‖ ≤ θ(c1x, . . . , cnx)
|∑i∈I Bi| −∑i∈I0

|Bi|ωi
, x ∈ X.

Moreover, G is the unique solution to (1) such that

‖g(x)− G(x)‖ ≤ βθ(c1x, . . . , cnx), x ∈ X,

with some constant β ∈ (0, ∞).

The stability of the homogeneous version of Equation (1) (i.e., with B = 0) was first
investigated by Forti [16]. The equation generalizes numerous functional equations that
are well known. In particular, the special cases of it are the equations of Cauchy

f (x + y) = f (x) + f (y),

Jensen

f
(1

2
(x + y)

)
=

1
2
(

f (x) + f (y)
)
,

Jordan–von Neumann

f (x + y) + f (x− y) = 2 f (x) + 2 f (y),

but also the equations of Drygas, Fréchet, and Popoviciu; the monomial and polynomial
functions (see [17]); the p-Wright affine function; and various others (e.g., cubic, quartic,
quintic etc.). For examples of stability results for the mentioned equations, we refer
to [18–29]. Further stability outcomes concerning (1) can be found, e.g., in [30–34] (see
also [35,36] for analogous investigations concerning some particular cases of (1)). For
information on the solutions to some of these functional equations, we refer to [17,37].

In [38], the authors introduced the following linear functional equation:

m

∑
i=1

Ai( f (ϕi(x̄))) + b = 0, x̄ := (x1, . . . , xn) ∈ Xn, (3)

where again m and n are positive integers; f : X → Y is a mapping from a linear space X
into a Banach space Y; and, for every i ∈ Nm := {1, . . . , m}, ϕi is a linear mapping from Xn

into X and Ai is a continuous endomorphism of Y and b ∈ Y . Using the classical Banach
contraction theorem, they proved the stability of (3) in Banach spaces. Notice also that
Equation (3) is a generalization of (1). The stability of another very general equation that
could be considered a generalization of (1) was studied in [39].
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Roughly speaking, the issue of Ulam stability can be formulated as follows: how much
the approximate solutions of an equation differ from the exact solutions of this equation.
The next definition explains more precisely how this notion could be understood in metric
spaces (R+ denotes the set of non-negative reals and AB means the family of all mappings
from a set B 6= ∅ into a set A 6= ∅).

Definition 1. Let S 6= ∅ and U 6= ∅ be nonempty sets, (W, d) and (V, ρ) be metric spaces, and
D ⊂WU and C ⊂ RS

+ be nonempty. Let F , E : D → VS and G : C → RU
+ be given. If for every

ψ ∈ D and δ ∈ C with

ρ
(
(Fψ)(s), (Eψ)(s)

)
≤ δ(s), s ∈ S,

there is φ ∈ D satisfying the equation
Fψ = Eψ (4)

and such that
d
(
φ(t), ψ(t)

)
≤ (Gδ)(t), t ∈ U,

then we say that Equation (4) is G-stable in the Ulam sense.

However, the notion of an approximate solution and difference between two functions
can be defined in different ways (see, e.g., [26,40–44]), depending on the tools that we use
to measure distances. One such tool is a modular.

The notion of a modular space was introduced by Nakano [45] and next redefined
and generalized by Musielak and Orlicz [46,47]. In the last decade, several authors studied
the Ulam stability of functional equations in modular spaces (see [44,48–50]). For instance,
using a fixed-point method due to Khamsi [51], Sadeghi established, in [49], a stability
result for a generalized Jensen functional equation in a convex modular space. Additionally,
using the same technique, Wongkum et al. [52] proved a stability result for a quartic
functional equation.

In the present paper, we use the direct method (analogous to [2]) to investigate the
stability of the functional equation

m

∑
i=1

Ai( f ( ϕi(x̄))) = D(x̄), x̄ := (x1, . . . , xn) ∈ Xn, (5)

for mappings f from a linear space X into a complete modular space Yρ, where n and m are
positive integers, ϕ1, . . . , ϕm are linear mappings from Xn to X; A1, . . . , Am are continuous
endomorphisms of Y; and the function D : Xn → Yρ is non-constant.

In particular, our results generalize some earlier stability outcomes for the modular
spaces in [44,48–50,52].

2. Preliminaries

We first recall some basic notions and properties in modular spaces, as in [6,7,44,46,47].

Definition 2. A functional ρ : Y → [0,+∞] is called a modular if, for every x, y ∈ Y,

M1. ρ(x) = 0 if and only if x = 0;
M2. ρ(αx) = ρ(x) for every α ∈ K with |α| = 1;
M3. ρ(αx + βy) ≤ ρ(x) + ρ(y) for every α, β ∈ R+ with α + β = 1.

If we replace condition M3 with the following one:

M4. ρ(αx + βy) ≤ αρ(x) + βρ(y) for every α, β ∈ R+ with α + β = 1,

then the modular ρ is called a convex modular.

If ρ is a modular in Y, then the set

Yρ := {x ∈ Y : lim
λ→0

ρ(λx) = 0}
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is called a modular space. Let us note that Yρ is a linear subspace of Y.

Definition 3. A modular ρ on Y is said to satisfy the ∆2-condition if there is k > 0 such that
ρ(2y) ≤ kρ(y) for every y ∈ Yρ.

It is easily seen that every norm is a convex modular that fulfills the ∆2-condition. If ρ
is a norm in Y, then clearly Yρ = Y, which means that our considerations also include the
case where Y is a classical normed space.

Remark 1. (a) If ρ is a modular on Y and y ∈ Y, then the function R+ 3 t → ρ(ty) is
non-decreasing, i.e., ρ(ay) ≤ ρ(by) for every a, b ∈ R+ with a < b (it is enough to take
y = 0 in M3).
(b) For a convex modular ρ on Y, we have ρ(αy) ≤ |α|ρ(y) for all y ∈ Y and α ∈ K with
|α| ≤ 1 and, moreover,

ρ

(
n

∑
j=1

αjyj

)
≤

n

∑
j=1

αjρ(yj) (6)

for all y1, . . . , yn ∈ Y and α1, . . . , αn ∈ R+ with ∑n
j=1 αj ≤ 1.

Definition 4. Let ρ be a modular on Y and (yn)n be a sequence in Y. Then,

(i) (yn)n is ρ-convergent to a point y ∈ Y (which we denote by y = ρ− limn yn), if ρ(yn− y)→
0 as n→ +∞;

(ii) (yn)n is ρ-Cauchy if for any ε > 0, we have ρ(yn − ym) < ε for sufficiently large m, n ∈ N;
(iii) Yρ is said to be ρ-complete if every ρ-Cauchy sequence in Yρ is ρ-convergent.
(iv) A subset C ⊂ Yρ is called ρ-closed if C contains every x ∈ Yρ such that there is a sequence

(xn)n in C which is ρ-convergent to x.

Notice that if (xn)n is ρ-convergent to x, then (αxn)n is ρ-convergent to αx, for α ∈ R+,
α ≤ 1. This does not need to hold if |α| > 1, unless ρ satisfies ∆2.

Definition 5. A modular ρ on Y is said to be lower semi-continuous if every sequence (xn)n in Yρ

that is ρ-convergent to some x ∈ Yρ, satisfies the inequality

ρ(x) ≤ lim inf
n→+∞

ρ(xn).

3. Stability of Equation (5)

In the sequel, X and Y are linear spaces over the same field K ∈ {R,C} and ρ denotes
a convex, lower semi-continuous modular on Y that satisfies the ∆2-condition, with a
constant k > 0. Moreover, we always assume that Yρ is ρ-complete.

Let m > 1 and n be positive integers, ϕi : Xn → X for i ∈ Nm := {1, 2, . . . , m}, and
A1, . . . , Am be endomorphisms of Yρ that commute (i.e., Ai ◦ Aj = Aj ◦ Ai for i, j ∈ Nm).
Moreover, we assume that each Ai is continuous with respect to the topology of the modular
space Yρ (as in [53]).

An arbitrary element (x1, . . . , xn) of Xn will be denoted by x̄, and, for every non empty
I ⊂ Nm, we define AI : Yρ → Yρ by AI(x) := ∑i∈I Ai(x) for x ∈ Yρ. If I = {1, 2, . . . , m},
then we simply write A instead of A{1,2,...,m}. Next, given I ⊂ Nm, by i 6∈ I we mean that
i ∈ Nm \ I.

Our main result concerns the stability of (5) in modular spaces.

Theorem 2. Let D : Xn → Yρ and ψ : X → Xn be such that, for every x̄ ∈ Xn,

m

∑
i=1

Ai(D(ψ ◦ ϕi(x̄))) =
m

∑
i=1

Ai(D(ϕi ◦ ψ(x1), . . . , ϕi ◦ ψ(xn))). (7)
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Suppose the following exist: θ : Xn → R+, a proper subset I of Nm and positive real numbers
ωi and αi, for i 6∈ I, such that AI possesses an eigenvalue M 6= 0 with eigenspace YM

ρ and
f (X) ∪ D(Xn) ⊂ YM

ρ . Assume that

ϕj ◦ ψ(x) = x, (8)

θ(ϕi ◦ ψ(x1), . . . , ϕi ◦ ψ(xn)) ≤ ωiθ(x̄), (9)

ϕp(ϕi ◦ ψ(x1), . . . , ϕi ◦ ψ(xn)) = ϕi ◦ ψ ◦ ϕp(x̄), (10)

θ ◦ ψ ◦ ϕi ◦ ψ(x) ≤ ωiθ ◦ ψ(x), (11)

γ :=
1
|M| ∑i 6∈I

αiωi < min
(

1,
2
k

)
, (12)

Ai(y) = αiy, and ∑
i 6∈I

αi ≤ |M| (13)

for all j ∈ I, i 6∈ I, p ∈ Nm, x̄ ∈ Xn, x ∈ X and y ∈ Yρ.
If a function f : X → Yρ satisfies

ρ

(
m

∑
i=1

Ai( f (ϕi(x̄)))− D(x̄)

)
≤ θ(x̄), x̄ ∈ Xn, (14)

then there is a unique solution G : X → YM
ρ of (5) such that

ρ(MG(x)−M f (x)) ≤ kθ(ψ(x))
2− kγ

, x ∈ X. (15)

Proof. Taking x̄ := ψ(x) in (14), for each x ∈ X we obtain

ρ

(
∑
i∈I

Ai( f (ϕi(ψ(x)))) + ∑
i 6∈I

Ai( f (ϕi(ψ(x))))− D(ψ(x))

)
≤ θ(ψ(x)),

whence, by (8), we come to

ρ

(
M

[
f (x)− −1

M

(
∑
i 6∈I

Ai( f (ϕi(ψ(x))))− D(ψ(x))

)])
≤ θ(ψ(x)). (16)

LetM denote the family of all g : X → YM
ρ . The familyM is nonempty since f ∈ M.

Now, for an arbitrary g ∈ M, define the mapping Tg : X → Yρ by

Tg(t) :=
−1
M

(
∑
i 6∈I

Ai(g(ϕi(ψ(t))))− D(ψ(t))

)
, t ∈ X.

Then,

AI(Tg(t)) = AI

(
−1
M

[
∑
i 6∈I

Ai(g(ϕi ◦ ψ(t)))− D(ψ(t))

])

=
−1
M

(
∑
i 6∈I

Ai ◦ AI(g(ϕi ◦ ψ(t))) + AI(D(ψ(t)))
)

=
−1
M

(
∑
i 6∈I

Ai(Mg(ϕi ◦ ψ(t)))−MD(ψ(t)

)
= MTg(t), t ∈ X, g ∈ M.

This shows that, for every t ∈ X and g ∈ M, Tg(t) ∈ YM
ρ and consequently Tg ∈ M.
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Now, we show that for every n ∈ N0 := N∪ {0},

ρ
(

M
(

Tn+1 f − Tn f
)
(t)
)
≤ γnθ ◦ ψ(t), t ∈ X. (17)

The case n = 0 coincides with (16). So assume that (17) holds for a non-negative
integer n. Then, by (6), (11), the definitions of T and γ (see (12)), and (13),

ρ
(

M
(
Tn+2 f (t)− Tn+1 f (t)

))
= ρ

(
∑
i 6∈I

Ai

(
Tn+1 f (ϕi ◦ ψ(t))− Tn f (ϕi ◦ ψ(t))

))
≤ 1
|M| ∑i 6∈I

αiρ
(

M
(

Tn+1 f (ϕi ◦ ψ(t))− Tn f (ϕi ◦ ψ(t))
))

≤ 1
|M| ∑i 6∈I

αiγ
nθ ◦ ψ ◦ ϕi ◦ ψ(t)

≤ 1
|M| ∑i 6∈I

αiωiγ
nθ ◦ ψ(t)

≤ γn+1θ ◦ ψ(t).

Thus, we have shown that (17) holds for every n ∈ N0.
Next, by (6), (12), and the ∆2 property, for all fixed m, n ∈ N0, and t ∈ X, one can obtain

ρ
(

M
(
Tn f − Tn+m f

)
(t)
)
= ρ

(
M

m−1

∑
i=0

(
1
2

)i+1
2i+1

(
Tn+i f − Tn+i+1 f

)
(t)

)

≤
m−1

∑
i=0

(
k
2

)i+1
ρ
(

M
(

Tn+i f − Tn+i+1 f
)
(t)
)

≤ kγn

2

m−1

∑
i=0

(
kγ

2

)i
θ(ψ(t))

≤ kγn θ(ψ(t))
2− kγ

.

Since γ < 1, we conclude that (MTn f (t))n is a ρ-Cauchy sequence in Yρ for every
t ∈ X. Since Yρ is ρ-complete and YM

ρ is ρ-closed, so (MTn f (t))n is ρ-convergent in YM
ρ .

This allows us to define a function G : X → YM
ρ by

G(t) :=
1
M

ρ−lim
n→+∞

MTn f (t), t ∈ X.

Since ρ is lower semi-continuous, one has

ρ(MG(t)−M f (t)) ≤ lim inf
n→+∞

ρ(MTm f (t)−M f (t))

≤ kθ(ψ(t))
2− kγ

, t ∈ X,

whereby we have (15).
Now, we prove that G satisfies Equation (5). First, we show by induction that, for

every k ∈ N0,

ρ

(
m

∑
p=1

Ap ◦ (Tk f ) ◦ ϕp(x̄)− D(x̄)

)
≤ γkθ(x̄), x̄ ∈ Xn. (18)
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The case k = 0 is just (14). Next, assume that (18) holds for k ∈ N0. Putting

ϕi ◦ ψ(x̄) := (ϕi ◦ ψ(x1), . . . , ϕi ◦ ψ(xn))),

by the assumption (7), for every i 6∈ I and every x̄ ∈ Xn, we obtain

m

∑
p=1

Ap ◦ (Tk+1 f ) ◦ ϕp(x̄) =
m

∑
p=1

Ap ◦ (T(Tk f )) ◦ ϕp(x̄)

=
−1
M ∑

i 6∈I
Ai

(
m

∑
p=1

Ap ◦ (Tk f ) ◦ ϕp

(
ϕi ◦ ψ(x̄)

))

+
1
M

m

∑
p=1

Ap
(

D ◦ ψ ◦ ϕp(x̄))
)

=
−1
M ∑

i 6∈I
Ai

(
m

∑
p=1

Ap

(
(Tk f )(ϕp(ϕi ◦ ψ(x̄)

))

+
1
M

m

∑
p=1

Ap
(

D(ϕp ◦ ψ(x1), . . . , ϕp ◦ ψ(xn))
)

=
−1
M ∑

i 6∈I
Ai

(
m

∑
p=1

Ap

(
(Tk f )(ϕp(ϕi ◦ ψ(x̄)

))

+
1
M

[
∑
i 6∈I

Ai

(
D(ϕi ◦ ψ(x̄))

)
+ ∑

i∈I
Ai(D(x̄))

]

=
−1
M ∑

i 6∈I
Ai

(
m

∑
p=1

Ap

(
(Tk f )(ϕp(ϕi ◦ ψ(x̄)

)
− D(ϕi ◦ ψ(x̄))

)
+ D(x̄),

whence

ρ

(
m

∑
p=1

Ap ◦ (Tk+1 f ) ◦ ϕp(x̄)− D(x̄)

)

= ρ

(
−1
M ∑

i 6∈I
Ai ◦

[
m

∑
p=1

Ap((Tk f )(ϕp(ϕi ◦ ψ(x̄))− D(ϕi ◦ ψ(x̄)

])

≤ ρ

(
−1
M ∑

i 6∈I
αi

[
m

∑
p=1

Ap((Tk f )(ϕp(ϕi ◦ ψ(x̄))− D(ϕi ◦ ψ(x̄)

])

≤ 1
|M| ∑i 6∈I

αiρ

(
m

∑
p=1

Ap((Tk f )(ϕp(ϕi ◦ ψ(x̄))− D(ϕi ◦ ψ(x̄)

)

≤ γk 1
|M| ∑i 6∈I

αiθ
(

ϕi ◦ ψ(x̄)
)

≤ γk 1
|M| ∑i 6∈I

αiωiθ(x̄)

≤ γk+1θ(x̄).

This means that (18) holds for every k ∈ N0. Now, since the topology of the modular
space Yρ is a linear topology, for each x̄ ∈ Xn, we obtain

m

∑
i=1

Ai ◦ G ◦ ϕi(x̄)− D(x̄) = ρ−lim
k→+∞

(
m

∑
i=1

Ai

(
(Tk f )(ϕi(x̄))

)
− D(x̄)

)
.
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and consequently

ρ

(
m

∑
i=1

Ai ◦ G ◦ ϕi(x̄))− D(x̄)

)
≤ lim inf

k→+∞
ρ

(
m

∑
i=1

Ai

(
(Tk f )(ϕi(x̄))

)
− D(x̄)

)
≤ lim inf

k→+∞
γkθ(x̄),

because ρ is lower semi-continuous. As γ < 1, this implies that

m

∑
p=1

Ap ◦ G ◦ ϕp(x̄) = D(x̄), x̄ ∈ Xn.

Finally, to show the uniqueness of G, assume that G1 : X → YM
ρ also is a solution

of (5) that satisfies (15). First, we prove that G and G1 are both fixed points of T. Since G is
a solution of (5), we obtain

∑
i∈I

Ai ◦ G ◦ ϕi ◦ ψ(t) + ∑
i 6∈I

Ai ◦ G ◦ ϕi ◦ ψ(t) = D ◦ ψ(t), t ∈ X.

Using (8), we obtain

∑
i∈I

Ai ◦ G(t) + ∑
i 6∈I

Ai ◦ G ◦ ϕi(ψ(t)) = D(ψ(t)), t ∈ X.

Moreover, AI ◦ G(t) = MG(t) for every t ∈ X and therefore TG = G. Using the same
argument, we obtain TG1 = G1.

Now, we prove by induction that, for every n ∈ N0,

ρ(MTnG(t)−MTnG1(t)) ≤
γnk2θ(ψ(t))

2− kγ
, t ∈ X. (19)

We have

ρ(MG(t)−MG1(t)) ≤
1
2

ρ(2M(G(t)− f (t))) +
1
2

ρ(2M(G1(t)− f (t)))

≤ k
2

ρ(MG(t)−M f (t)) +
k
2

ρ(MG1(t)−M f (t))

≤ k2θ(ψ(t))
2− kγ

.

Then, (19) holds for n = 0. Next, if (19) holds for n ∈ N0, then

ρ
(

MTn+1G(t)−MTn+1G1(t)
)
≤ 1
|M| ∑i 6∈I

αiρ
((

MTnG ◦ ϕi −MTnG1 ◦ ϕi
)
(ψ(t))

)
≤ 1
|M| ∑i 6∈I

αiγ
n k2θ(ψ ◦ ϕi ◦ ψ(t))

2− kγ

≤ γn+1 k2θ(ψ(t))
2− kγ

.

Thus, by induction, we have shown (19). Therefore, for every n ∈ N0 and every
t ∈ X, we have

ρ(MG(t)−MG1(t)) = ρ(MTnG(t)−MTnG1(t))

≤ γn k2θ(ψ(t))
2− kγ

.
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Letting n tend to +∞, we obtain G(t) = G1(t) for every t ∈ X. This finishes the
proof.

Using Theorem 2, we can show the stability of various linear functional equations. For
instance, we can prove the stability of the following Cauchy inhomogeneous functional
equation:

f (x1 + x2)− f (x1)− f (x2) = D(x1, x2). (20)

Corollary 1. Assume that ‖ ‖ is a norm on X, L ∈ R+, and p, q ∈ [−∞, s] with s =

min
(

1, 2− ln(k)
ln(2)

)
. Assume also that D : X2 → Yρ is a given symmetric and biadditive mapping,

and f : X → Yρ satisfies

ρ( f (x1 + x2)− f (x1)− f (x2)− D(x1, x2)) ≤ L(‖x1‖p + ‖x2‖q),

for every x1, x2 ∈ X. Then, there is a unique solution G : X → Yρ to the Cauchy inhomogeneous
Equation (20) such that

ρ(2 f (x)− 2G(x)) ≤ kL(‖x‖p + ‖x‖q)

2− 2r−1k
, x ∈ X, (21)

with r = max(p, q).

Proof. Here, we have m = 3, n = 2. Define ψ : X → X2 by ψ(x) = (x, x), x ∈ X, and
for every i = 1, 2, 3, the linear mappings ϕi : X2 → X and Ai : Yρ → Yρ by ϕ1(x1, x2) :=
x1 + x2, ϕ2(x1, x2) := x1, ϕ3(x1, x2) := x2 and A1(y) = −A2(y) = −A3(y) := y. Then,
(see the next remark) condition (7) holds. Putting I = {2, 3}, ω1 = 2r with r = max(p, q),
α1 = 1, M = −2, and θ(x1, x2) = L(‖x1‖p + ‖x2‖q) for x1, x2 ∈ X; from Theorem 2, we
obtain that there is a unique solution G : X → Yρ to Equation (20), which satisfies (21),
as desired.

In a simplified situation when X = R and the modular is a norm, Corollary 1 has the
following form.

Corollary 2. Let ‖ ‖ be a complete norm on Y, ŷ ∈ Y, L ∈ R+ and p, q ∈ [−∞, 1]. Moreover, let
f : R→ Y be continuous at some point x0 ∈ R and satisfy

‖ f (x1 + x2)− f (x1)− f (x2)− x1x2 ŷ ‖ ≤ L(|x1|p + |x2|q),

for every x1, x2 ∈ R. Then, there is a unique vector y0 ∈ Y with∥∥∥∥ f (x)− xy0 −
x2

2
ŷ
∥∥∥∥ ≤ L(|x|p + |x|q)

2− 2r , x ∈ R, (22)

where r = max(p, q).

Proof. As we have already noticed just after Definition 3, every norm is a convex modular
that satisfies the ∆2-condition with k = 2. So, we can apply Corollary 1 (with X = R and
D(x1, x2) = x1x2 ŷ for x1, x2 ∈ R). According to it there is a unique solution G : R→ Y to
the Cauchy inhomogeneous Equation (20) such that

‖2 f (x)− 2G(x)‖ ≤ kL(|x|p + |x|q)
2− 2r−1k

, x ∈ R. (23)

Note that in this case G fulfils the equation

G(x1 + x2)− G(x1)− G(x2) = x1x2 ŷ, x1, x2 ∈ R,



Symmetry 2022, 14, 2468 10 of 12

whence

G(x1 + x2)−
(x1 + x2)

2

2
ŷ−

(
G(x1)−

x2
1

2
ŷ
)
−
(

G(x2)−
x2

2
2

ŷ
)
= 0, x1, x2 ∈ R.

Hence, the function G0 : R→ Y, given by

G0(x) = G(x)− x2

2
ŷ, x ∈ R,

is additive. Next, (23) implies that G is bounded on a neigbourhood of x0 and so is G0,
which means (see, e.g., [37]) that there is y0 ∈ Y such that

G0(x) = xy0, x ∈ R.

Now, it is easily seen that (23) yields (22). The uniqueness of G implies the uniqueness
of y0.

Example 1. If Yρ is a commutative algebra, then the function D : X2 → Yρ given by D(x, y) =
ϕ1(x)ϕ1(y) for all x, y ∈ X, where ϕ1 : X → Yρ is a linear mapping, is symmetric and biadditive.

The next remark provides some comments on condition (7).

Remark 2. (1) Every constant function D : Xn → Y satisfies condition (7).
(2) If D1, D2 : Xn → Y satisfy (7), then so does the function α1D1 + α2D2 for any fixed

scalars α1, α2.
(3) Consider the situation in Corollary 1 (i.e., when Equation (5) has the form (20)). Then,

condition (7) has the form

D(x1 + x2, x1 + x2)− D(x1, x1)− D(x2, x2) = D(2x1, 2x2)− 2D(x1, x2). (24)

It is easy to check that, for every h : X → Y, the function D : X2 → Y, given by

D(x1, x2) = h(x1 + x2)− h(x1)− h(x2), x1, x2 ∈ X, (25)

is a solution to Equation (24). In particular, if D is symmetric and biadditive, then (25)
holds with h(x) = 1

2 D(x, x) for x ∈ X. Thus, Equation (24) holds for every symmetric
and biadditive function D : X2 → Y.

4. Conclusions

We continue the investigation of the stability in the sense of Ulam of the non-homogeneous
version of the very general linear functional Equation (5), which was introduced
in [38] and generalizes numerous linear functional equations. Here, using the direct
method, we show that this equation is stable in the context of complete modular spaces,
whenever the modular is assumed to be convex and satisfies the ∆2-condition. The outcome
of this study covers most of the known results in the same context.
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13. Brzdęk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungarica 2013, 141, 58–67. [CrossRef]
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