Developmental Noise and Biological System Condition: Prolegomena
Abstract
1. Introduction
2. Developmental Noise Assessment
3. Assessment of the Developing System Condition
4. Applicability of the Approach
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waddington, C.H. The Strategy of the Genes; George Allen & Unwin: London, UK, 1957; p. 262. [Google Scholar]
- Van Valen, L. A study of fluctuating asymmetry. Evolution 1962, 16, 125–142. [Google Scholar] [CrossRef]
- Willmore, K.E.; Hallgrímsson, B. Within Individual Variation: Developmental Noise Versus Developmental Stability in Variation; Hallgrímsson, B., Hall, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 191–218. [Google Scholar]
- Zakharov, V.M.; Shadrina, E.G.; Trofimov, I.E. Fluctuating Asymmetry, Developmental Noise and Developmental Stability: Future Prospects for the Population Developmental Biology Approach. Symmetry 2020, 12, 1376. [Google Scholar] [CrossRef]
- Roy, S.; Majumdar, S.M. Noise and Randomness in Living System; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef]
- Wilcox, B.A.; Aguirre, A.A.; Horwitz, P. Connecting Ecology, Health, and Sustainability. In New Directionsin Conservation Medicine: Applied Cases of Ecological Health; Aguirre, A.A., Ostfeld, R., Daszak, P., Eds.; Oxford University Press: Oxford, MI, USA, 2012; pp. 17–32. [Google Scholar]
- Aguirre, A.A.; Basu, N.; Kahn, L.H.; Morin, X.K.; Echaubard, P.; Wilcox, B.A.; Beasley, V.R. Transdisciplinary and social-ecological health frameworks—Novel approaches to emerging parasitic and vector-borne diseases. Parasite Epidemiol. Control 2019, 4, e00084. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Animal welfare complementing or conflicting with other sustainability issues. Appl. Anim. Behav. Sci. 2019, 219, 104829. [Google Scholar] [CrossRef]
- Tarazona, A.M.; Ceballos, M.C.; Broom, D.M. Human relationships with domestic and other animals: One health, one welfare, one biology. Animals 2020, 10, 43. [Google Scholar] [CrossRef]
- Astauroff, B.L. Analyse der erblichen Störungsfälle der bilateralen Symmetrie. Z. Ver-Erbungslehre 1930, 55, 183–262. [Google Scholar] [CrossRef]
- Mather, K. Genetical control of stability in development. Heredity 1953, 7, 297–336. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, Analysis, Patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Zakharov, V.M. Future prospects for population phenogenetics. Sov. Sci. Rev. F. Physiol. Gen. Biol. 1989, 4, 1–79. [Google Scholar]
- Pertoldi, C.; Kristensen, T.N.; Loeschcke, V. A new method for estimating environmental variability for clonal organisms, and the use of fluctuating asymmetry as an indicator of developmental Instability. J. Theor. Biol. 2001, 210, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.C.; Graham, J.H.; Emlen, J.M.; Tracy, M.; Hough, R.A.; Alados, C.L.; Escós, J. Plant developmental instability: New measures, applications, and regulation. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 367–386. [Google Scholar]
- Sinclair, J.P.; Kashian, D.M.; Bradford, J.B.; Freeman, D.C. Variation in Fractal Symmetry of Annual Growth in Aspen as an Indicator of Developmental Stability in Trees. Symmetry 2015, 7, 354–364. [Google Scholar] [CrossRef]
- Moller, A.P.; Swaddle, J.P. Asymmetry, Developmental Stability, and Evolution; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Graham, J.H.; Raz, S.; Hel-Or, H.; Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2010, 2, 466–540. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Trofimov, I.E. Fluctuating asymmetry as an indicator of stress. Emerg Top Life Sci 2022, 6, 295–301. [Google Scholar] [CrossRef]
- Zakharov, V.M. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zool. Fenn. 1992, 191, 7–30. [Google Scholar]
- Clarke, G.M. Relationships between developmental stability and fitness: Application for conservation biology. Conserv. Biol. 1995, 9, 18–24. [Google Scholar] [CrossRef]
- Clarke, G.M. Developmental Stability—Fitness Relationships. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 187–195. [Google Scholar]
- Parsons, P.A. Environments and evolution: Interactions between stress, resource inadequacy and energetic efficiency. Biol. Rev. 2005, 80, 589–610. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Trofimov, I.E.; Sheftel, B.I. Fluctuating Asymmetry and Population Dynamics of the Common Shrew, Sorex araneus, in Central Siberia under Climate Change Conditions. Symmetry 2020, 12, 1960. [Google Scholar] [CrossRef]
- Leary, R.F.; Allendorf, F.W.; Knudsen, K.L. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fenn. 1992, 191, 79–95. [Google Scholar]
- Zakharov, V.M.; Krysanov, E.Y.; Pronin, A.V.; Trofimov, I.E. Study of developmental homeostasis in natural populations. Health of environment concept: Methodology and practice of estimation. Russ. J. Dev. Biol. 2017, 48, 355–368. [Google Scholar] [CrossRef]
- Krysanov, E.Y.; Ordzhonikidze, K.G.; Simanovsky, S.A. Cytogenetic indicators in estimation of environmental state. Russ. J. Dev. Biol. 2018, 49, 36–41. [Google Scholar] [CrossRef]
- Pronin, A.V.; Nikolaeva, T.N.; Deeva, A.V. Immunological approach to assessing the health of the environment. Russ. J. Dev. Biol. 2018, 49, 42–47. [Google Scholar] [CrossRef]
- Soule, M.E. Phenetics of Natural Populations. II. Asymmetry and Evolution in a Lizard. Am. Nat. 1967, 101, 141–160. [Google Scholar] [CrossRef]
- Zakharov, V.M. Linking Developmental Stability and Environmental stress: A Whole Organism Approach. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 402–414. [Google Scholar]
- Shadrina, E.G.; Vol’pert, Y.L. Developmental instability of the organism as a result of pessimization of environment under anthropogenic transformation of natural landscapes. Russ. J. Dev. Biol. 2014, 45, 117–126. [Google Scholar] [CrossRef]
- Shadrina, E.G.; Vol’pert, Y.L. Experience of applying plant and animal fluctuating asymmetry in assessment of environmental quality in terrestrial ecosystems: Results of 20-year studies of wildlife and anthropogenically transformed territories. Russ. J. Dev. Biol. 2018, 49, 23–35. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Clarke, G.M. BIOTEST: A New Integrated Biological Approach for Assessing the Condition of Natural Environments; International Biotest Foundation: Moscow, Russia, 1993. [Google Scholar]
- Leung, B.; Knopper, L.; Mineau, P. A Critical Assesment of the Utility of Fluctuating Asymmetry as a Biomarker of Anthropogenic Stress. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 415–426. [Google Scholar]
- Peakall, D.B. Animal Biomarkers as Pollution Indicators; Chapman & Hall: London, UK, 1992; p. 292. [Google Scholar]
- Peakall, D.B.; Walker, C.H.; Migula, P. (Eds.) Biomarkers: A Pragmatic Basis for Remediation of Severe Pollution in Eastern Europe; Springer: Dodrecht, The Netherlands, 1999; p. 324. [Google Scholar]
- Kendall, R.J.; Lacher, T.E.; Cobb, G.P.; Cox, S.B. (Eds.) Wildlife Toxicology: Emerging Contaminant and Biodiversity Issues; CRC Press: Boca Raton, FL, USA, 2010; p. 322. [Google Scholar]
- Kendall, R.J. Wildlife Toxicology: Where We Have Been and Where We Are Going. J. Environ. Anal. Toxicol. 2016, 6, 348. [Google Scholar] [CrossRef]
- Broom, D.M.; Johnson, K.G. Stress and Animal Welfare; Chapman & Hall: London, UK, 1993; p. 211. [Google Scholar]
- Broom, D.M. Welfare in Relation to Feelings, Stress and Health. REDVET. Rev. Electrónica Vet. 2007, 1695, 7504. [Google Scholar]
- Erofeeva, E.A.; Yakimov, B.N. Change of Leaf Trait Asymmetry Type in Tilia cordata Mill. and Betula pendula Roth under Air Pollution. Symmetry 2020, 12, 727. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Ostfeld, R.S.; Tabor, G.M.; House, C.; Pearl, M.C. Conservation Medicine: Ecological Health in Practice; Oxford University Press: New York, NY, USA, 2002; p. 408. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, V.M.; Trofimov, I.E. Developmental Noise and Biological System Condition: Prolegomena. Symmetry 2022, 14, 2380. https://doi.org/10.3390/sym14112380
Zakharov VM, Trofimov IE. Developmental Noise and Biological System Condition: Prolegomena. Symmetry. 2022; 14(11):2380. https://doi.org/10.3390/sym14112380
Chicago/Turabian StyleZakharov, Vladimir M., and Ilya E. Trofimov. 2022. "Developmental Noise and Biological System Condition: Prolegomena" Symmetry 14, no. 11: 2380. https://doi.org/10.3390/sym14112380
APA StyleZakharov, V. M., & Trofimov, I. E. (2022). Developmental Noise and Biological System Condition: Prolegomena. Symmetry, 14(11), 2380. https://doi.org/10.3390/sym14112380