Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis)
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leary, R.F.; Allendorf, F.W.; Knudsen, K.L. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fenn. 1992, 191, 79–95. [Google Scholar]
- Scheiner, S.M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 1993, 24, 35–68. [Google Scholar] [CrossRef]
- Gilbert, S.F. Ecological Developmental Biology: Developmental Biology Meets the Real World. Dev. Biol. 2001, 233, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F.; Barresi, M.J.F. Developmental Biology, 11th ed.; Sinauer Associates: Sunderland, MA, USA, 2016. [Google Scholar]
- Soule, M.; Baker, B. Phenetics of natural populations IV. The population asymmetry parameter in the butterfly Coenonympha tullia. Heredity 1968, 23, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Kat, P.W. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). Am. Nat. 1982, 119, 824–832. [Google Scholar] [CrossRef]
- Parsons, P.A. Fluctuating asymmetry: A biological monitor of environmental and genomic stress. Heredity 1992, 68, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Mather, K. Genetical control of stability in development. Heredity 1953, 7, 297–336. [Google Scholar] [CrossRef]
- Waddington, C.H. The Strategy of the Genes; George Allen & Unwin: London, UK, 1957; 262p. [Google Scholar]
- Yedier, S.; Bostanci, D.; Kontas, S.; Kurucu, G.; Polat, N. Comparison of otolith mass asymmetry in two different Solea solea populations in Mediterranean Sea. Ordu Üniversitesi Bilim Ve Teknol. Derg. 2018, 8, 125–133. [Google Scholar]
- Yedier, S.; Bostanci, D.; Kontas, S.; Kurucu, G.; Polat, N. Fluctuating asymmetry in otolith dimensions of Trachurus mediterraneus collected from the Middle Black Sea. Acta Biol. Turc. 2018, 31, 152–159. [Google Scholar]
- Zakharov, V.M.; Shadrina, E.G.; Trofimov, I.E. Fluctuating Asymmetry, Developmental Noise and Developmental Stability: Future Prospects for the Population Developmental Biology Approach. Symmetry 2020, 12, 1376. [Google Scholar] [CrossRef]
- Graham, J.H. Nature, Nurture, and Noise: Developmental Instability, Fluctuating Asymmetry, and the Causes of Phenotypic Variation. Symmetry 2021, 13, 1204. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Prieto-Dueñas, I.S.; Tapia-Torres, Y.; Magno, A.Z.B.; Suazo-Ortuño, I.; Cuevas-Reyes, P. Fluctuating asymmetry and oxidative stress indicate environmental stress of Cane toads Rhinella marina. Zool. Anz. 2022, 299, 234–242. [Google Scholar] [CrossRef]
- Zhelev, Z.; Tsonev, S.; Boyadzhiev, P. Using of fluctuating asymmetry in adult Pelophylax ridibundus (Amphibia: Anura: Ranidae) meristic traits as a method for assessing developmental stability of population and environmental quality of their habitat: Industrial area in southern Bulgaria. Turk. J. Zool. 2022, 46, 220–227. [Google Scholar] [CrossRef]
- Zakharov, V.M. Future Prospects for Population Phenogenetics; Soviet Scientific Reviews, Section F, Physiology and General Biology Reviews; Routledge: London, UK, 1989; Volume 4, pp. 1–80. [Google Scholar]
- Van Valen, L. A study of fluctuating asymmetry. Evolution 1962, 16, 125–142. [Google Scholar] [CrossRef]
- Soule, M.E. Phenetics of Natural Populations. II. Asymmetry and Evolution in a Lizard. Am. Nat. 1967, 101, 141–160. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, Analysis, Patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Pankakoski, E.; Sheftel, B.I.; Peltonen, A.; Hanski, I. Developmental stability and population dynamics in the common shrew, Sorex araneus. Am. Nat. 1991, 138, 797–810. [Google Scholar] [CrossRef]
- Zhivotovsky, L.A. A measure of fluctuating asymmetry for a set of characters. Acta Zool. Fenn. 1992, 191, 73–77. [Google Scholar]
- Zakharov, V.M. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zool. Fenn. 1992, 191, 7–30. [Google Scholar]
- Graham, J.H.; Raz, S.; Hel-Or, H.; Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2010, 2, 466–540. [Google Scholar] [CrossRef]
- Astauroff, B.L. Analyse der erblichen Störungsfälle der bilateralen Symmetrie. Z. Ver-Erbungslehre 1930, 55, 183–262. [Google Scholar] [CrossRef]
- Bader, R.S. Fluctuating Asymmetry in the Dentition of the House Mouse. Growth 1965, 29, 291–300. [Google Scholar] [PubMed]
- Angus, R.A. Quantifying Fluctuating Asymmetry: Not All Methods are Equivalent. Growth 1982, 46, 337–342. [Google Scholar]
- Pertoldi, C.; Kristensen, T.N.; Loeschcke, V. A new method for estimating environmental variability for clonal organisms, and the use of fluctuating asymmetry as an indicator of developmental Instability. J. Theor. Biol. 2001, 210, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Lajus, D.L.; Graham, J.H.; Kozhara, A.V. Developmental instability and the stochastic component of total phenotypic variance. In Developmental Instability: Causes and Consequences; Polak, M., Ed.; Oxford University Press: New York, NY, USA, 2003; pp. 343–363. [Google Scholar]
- Osgood, D.W. Effects of temperature on the development of meristic characters in Natrix fasciata. Copeia 1978, 1, 33–47. [Google Scholar] [CrossRef]
- Zakharov, V.M. Appearance, fixation and stabilization of environmentally induced phenotypic changes as a microevoutionary event. Genetica 1993, 89, 227–234. [Google Scholar] [CrossRef]
- Qualls, F.J.; Shine, R. Geographic variation in lizard phenotypes: Importance of the incubation environment. Biol. J. Linn. Soc. 1998, 64, 477–491. [Google Scholar] [CrossRef]
- Beardmore, J.A. Developmental stability in constant and fluctuating temperatures. Heredity 1960, 14, 411–422. [Google Scholar] [CrossRef]
- Freeman, G.H. Statistical methods for the analysis of genotype-environment interactions. Heredity 1973, 31, 339–354. [Google Scholar] [CrossRef]
- Glotov, N.V. Analysis of the genotype-environment interaction in natural populations. Acta Zool. Fenn. 1992, 191, 47–55. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, V.M.; Zhdanova, N.P.; Trofimov, I.E. Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis). Symmetry 2022, 14, 2426. https://doi.org/10.3390/sym14112426
Zakharov VM, Zhdanova NP, Trofimov IE. Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis). Symmetry. 2022; 14(11):2426. https://doi.org/10.3390/sym14112426
Chicago/Turabian StyleZakharov, Vladimir M., Nadezhda P. Zhdanova, and Ilya E. Trofimov. 2022. "Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis)" Symmetry 14, no. 11: 2426. https://doi.org/10.3390/sym14112426
APA StyleZakharov, V. M., Zhdanova, N. P., & Trofimov, I. E. (2022). Phenotypic Variation in a Species Range: Another Look (Developmental Stability Study of the Meristic Variation in the Sand Lizard Lacerta agilis). Symmetry, 14(11), 2426. https://doi.org/10.3390/sym14112426