Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
Abstract
1. Introduction and Definitions
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponnusamy, S.; Silverman, H. Complex Variables with Applications; Birkhäuser: Boston, MA, USA, 2006. [Google Scholar]
- Lewy, H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 1936, 42, 689–692. [Google Scholar] [CrossRef]
- Duren, P.; Hengartner, W.; Laugesen, R.S. The argument principle for harmonic functions. Am. Math. Mon. 1996, 103, 411–415. [Google Scholar] [CrossRef]
- Clunie, J.; Small, T.S. Harmonic univalent functions. Ann. Acad. Sci. Fen. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Small, S.T. Constants for planar harmonic mappings. J. Lond. Math. Soc. 1990, 2, 237–248. [Google Scholar] [CrossRef]
- Dziok, J. On Janowski harmonic functions. J. Appl. Anal. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Raza, M.; Srivastava, H.M.; Arif, M.; Ahmad, K. Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 2021, 55, 53–71. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Darus, M. Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Math. 2021, 6, 3624–3640. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogus of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Chauhan, H.V.S.; Sing, B.; Tunc, C.; Tunc, O. On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2022, 116, 101. [Google Scholar] [CrossRef]
- Haq, M.U.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of differential subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef]
- Khan, M.F. Certain new class of harmonic functions involving quantum calculus. J. Funct. Spaces 2022, 2022, 6996639. [Google Scholar] [CrossRef]
- Kwon, O.S.; Khan, S.; Sim, Y.J.; Hussain, S. Bounds for the coefficient of Faber polynomial of meromorphic starlike and convex functions. Symmetry 2019, 11, 1368. [Google Scholar] [CrossRef]
- Liu, B. Global exponential convergence of non-autonomous SICNNs with multi-proportional delays. Neural Comput. Appl. 2017, 28, 1927–1931. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. 2019, 70, 1727–1740. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of symmetric conic domains to a subclass of q-starlike functions. Symmetry 2022, 14, 803. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Mat. 2013, 68, 107–122. [Google Scholar]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2021, 7, 667–680. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian Finish Seminar, Bucharest; Springer: Berlin/Heidelberg, Germany, 1981; pp. 362–372. [Google Scholar]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K. Salagean type harmonic univalent functions. Southwest J. Pure Appl. Math. 2002, 2002, 77–82. [Google Scholar]
- Jahangiri, J.M. Harmonic univalent functions defined by q-calculus operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A class of k-symmetric harmonic functions involving a certain q-derivative operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Dziok, J.; Jahangiri, J.M.; Silverman, H. Harmonic functions with varying coefficients. J. Inequalities Appl. 2016, 2016, 139. [Google Scholar] [CrossRef]
- Altinkaya, S.; Cakmak, S.; Yalcin, S. On a new class of Salagean type harmonic univalent functions associated with subordination. Honam. Math. J. 2018, 40, 433–446. [Google Scholar]
- Jahangiri, J.M.; Magesh, N.; Murugesan, C. Certain subclasses of starlike harmonic functions defined by subordination. J. Fract. Calc. Appl. 2017, 8, 88–100. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry 2022, 14, 2188. https://doi.org/10.3390/sym14102188
Khan MF, Al-Shbeil I, Aloraini N, Khan N, Khan S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry. 2022; 14(10):2188. https://doi.org/10.3390/sym14102188
Chicago/Turabian StyleKhan, Mohammad Faisal, Isra Al-Shbeil, Najla Aloraini, Nazar Khan, and Shahid Khan. 2022. "Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions" Symmetry 14, no. 10: 2188. https://doi.org/10.3390/sym14102188
APA StyleKhan, M. F., Al-Shbeil, I., Aloraini, N., Khan, N., & Khan, S. (2022). Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry, 14(10), 2188. https://doi.org/10.3390/sym14102188