Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications
Abstract
:1. Introduction and Preliminaries
2. H.H.J.M Inequalities
3. Key Lemmas
4. Estimates of H.H.J.M-Type Inequalities Involving Strongly Harmonic Convex Functions
5. Applications
- The arithmetic mean:
- The generalized log-mean:
Error Bounds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, O.P. Convexity with respect to a differential equation. J. Math. Anal. Appl. 2006, 315, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Boltyanski, V.G.; Castro, J.J. Centrally symmetric convex sets. J. Convex Anal. 2007, 14, 345–351. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications. Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Al-Azemi, F.; Calin, O. Asian options with harmonic average. Appl. Math. Inf. Sci. 2015, 9, 1–9. [Google Scholar]
- Noor, M.A. Advanced Convex Analysis and Optimization; Lecture Notes; COMSATS University Islamabad: Islamabad, Pakistan, 2017. [Google Scholar]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Awan, M.U. Strongly generalized harmonic convex functions and integral inequalities. J. Math. Anal. 2016, 7, 66–77. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Hermite-Hadamard inequalities for strongly harmonic convex functions. J. Inequal. Spec. Funct. 2016, 7, 99–113. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Safdar, F. Some properties of generalized strongly harmonic convex functions. Int. J. Anal. Appl. 2018, 16, 427–436. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Akhtar, N. On approximately harmonic h-convex functions depending on a given function. Filomat 2019, 33, 3783–3793. [Google Scholar] [CrossRef]
- Baloch, I.A.; Mughal, A.A.; Chu, Y.M.; Haq, A.U.; Sen, M.D.L. A varient of Jensen-type inequality and related results for harmonic convex functions. Aims Math. 2020, 5, 6404–6418. [Google Scholar] [CrossRef]
- Moradi, H.R.; Omidvar, M.E.; Khan, M.A.; Nikodem, K. Around Jensen’s inequality for strongly convex functions. Aequationes Math. 2017, 92, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Sci. B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Abdeljawad, T.; Baleanu, D. On Fractional Derivatives with Exponential Kernel and their Discrete Versions. Rep. Math. Phys. 2017, 80, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New Fractional Derivatices with Non-Local and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Ogulmus, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives. J. Funct. Spaces 2020, 2020, 7061549. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Rashid, S.; Akdemir, A.O.; Chu, Y.M. New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 1–24. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Umar, M.; Aslam, A.; Gao, W. Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Math. 2020, 5, 5193–5220. [Google Scholar] [CrossRef]
- Cortez, M.V.; Awan, M.U.; Javed, M.Z.; Kashuri, A.; Noor, M.A.; Noor, K.I. Some new generalized κ-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications. AIMS Math. 2022, 7, 3203–3220. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Iscan, I. Jensen-Mercer inequality for GA-convex functions and some related inequalities. J. Inequalities Appl. 2020, 2020, 21. [Google Scholar]
- Noor, M.A.; Noor, K.I. Harmonic Variational Inequalities. Appl. Math. Inf. Sci. 2016, 10, 1811–1814. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S.; Awan, M.U. Fractal Integral Inequalities for Harmonic Convex Functions. Appl. Math. Inf. Sci. 2018, 12, 831–839. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Khan, A.G. Quasi variational inclusions involving three operators. Inform. Sci. Lett. 2022, 11, 589–599. [Google Scholar]
- Awan, M.U.; Noor, M.; Noor, K.I. Hermite-Hadamard Inequalities for Exponentially Convex Functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Faisal, S.; Adil Khan, M.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New “Conticrete” Hermite-Hadamard-Jensen-Mercer Fractional Inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Abdel-Aty, A.-H.; Khater, M.M.A.; Attia, R.A.M.; Abdel-Aty, M.; Eleuch, H. On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 2020, 28, 2040035. [Google Scholar] [CrossRef]
- Ismail, G.; Abdl-Rahim, H.; Abdel-Aty, A.; Kharabsheh, R.; Alharbi, W. An analytical solution for fractional oscillator in a resisting medium. Chaos Solitons Fractals 2019, 130, 109395. [Google Scholar] [CrossRef]
- Gao, W.; Guirao, J.L.G.; Abdel-Aty, M.; Xi, W. An independent set degree condition for fractional critical deleted graphs. Discret. Contin. Dyn. Syst.—S 2019, 12, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J.; Abdel-Aty, M.; Cattani, C. A New General Fractional-Order Derivative with Rabotnov Fractional-Exponential Kernel Applied to Model the Anomalous Heat Transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef] [Green Version]
- Uthayakumar, R.; Gowrisankar, A. Generalized Fractal Dimensions in Image Thresholding Technique. Inf. Sci. Lett. 2014, 3, 125–134. [Google Scholar] [CrossRef]
- Shaalan, A.B.; Habubi, N.F.; Chiad, S.S.; Toma, Z.A. New Design of Hairpin-Koch Fractal Filter for Suppression of Spurious Band. Int. J. Thin Film Sci. Technol. 2013, 2, 217–221. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Mihai, M.V.; Budak, H.; Khan, A.G.; Noor, M.A. Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications. Symmetry 2022, 14, 2187. https://doi.org/10.3390/sym14102187
Bin-Mohsin B, Javed MZ, Awan MU, Mihai MV, Budak H, Khan AG, Noor MA. Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications. Symmetry. 2022; 14(10):2187. https://doi.org/10.3390/sym14102187
Chicago/Turabian StyleBin-Mohsin, Bandar, Muhammad Zakria Javed, Muhammad Uzair Awan, Marcela V. Mihai, Hüseyin Budak, Awais Gul Khan, and Muhammad Aslam Noor. 2022. "Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications" Symmetry 14, no. 10: 2187. https://doi.org/10.3390/sym14102187
APA StyleBin-Mohsin, B., Javed, M. Z., Awan, M. U., Mihai, M. V., Budak, H., Khan, A. G., & Noor, M. A. (2022). Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications. Symmetry, 14(10), 2187. https://doi.org/10.3390/sym14102187