Special Issue on Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures
1. Introduction
2. Contributions
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Marty, F. Sur Une Generalisation de la Notion de Groupe. Huitieme Congres des Mathematiciens Scand. Stockholm. 1934, pp. 45–49. Available online: https://www.semanticscholar.org/paper/Sur-une-generalization-de-la-notion-de-groupe-Marty/28b360e062f147b7a01e00713b40b46d948e00db#related-papers (accessed on 15 July 2022).
- Connes, A.; Consani, C. From monoids to hyperstructures: In search of an absolute arithmetic. In Casimir Force, Casimir Operators and the Riemann Hypothesis: Mathematics for Innovation in Industry and Science; van Dijk, G., Wakayama, M., Eds.; De Gruyter: Berlin, Germany; New York, NY, USA, 2010; pp. 147–198. [Google Scholar]
- Connes, A.; Consani, C. The hyperring of adele classes. J. Number Theory 2011, 131, 159–194. [Google Scholar] [CrossRef] [Green Version]
- Jun, J. Algebraic geometry over hyperrings. Adv. Math. 2018, 323, 142–192. [Google Scholar] [CrossRef] [Green Version]
- Tolliver, J. An equivalence between two approaches to limits of local fields. J. Number Theory 2016, 166, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Jun, J. Association schemes and hypergroups. Commun. Algebra 2018, 46, 942–960. [Google Scholar] [CrossRef] [Green Version]
- Lorscheid, O. Tropical geometry over the tropical hyperfield. Rocky Mt. J. Math. 2022, 52, 189–222. [Google Scholar] [CrossRef]
- Massouros, G.; Massouros, C. Hypercompositional Algebra, Computer Science and Geometry. Mathematics 2020, 8, 1338. [Google Scholar] [CrossRef]
- Massouros, C.; Massouros, G. An Overview of the Foundations of the Hypergroup Theory. Mathematics 2021, 9, 1014. [Google Scholar] [CrossRef]
- Davvaz, B.; Cristea, I. Fuzzy Algebraic Hyperstructures: An Introduction; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2015; Volume 321. [Google Scholar]
- Heidari, D.; Cristea, I. Breakable Semihypergroups. Symmetry 2019, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- De Salvo, M.; Fasino, D.; Lo Faro, G. On Hypergroups with a β-Class of Finite Height. Symmetry 2020, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Krehlik, Š.; Vyroubalova, J. The Symmetry of Lower and Upper Approximations, Determined by a Cyclic Hypergroup, Applicable in Control Theory. Symmetry 2020, 12, 54. [Google Scholar] [CrossRef]
- Vahedi, V.; Jafarpour, M.; Cristea, I. Hyperhomographies on Krasner Hyperfields. Symmetry 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Al Tahan, M.; Hoškova-Mayerova, Š.; Davvaz, B. Some Results on (Generalized) Fuzzy Multi-Hv-Ideals of Hv-Rings. Symmetry 2019, 11, 1376. [Google Scholar] [CrossRef] [Green Version]
- Bordbar, H.; Muhiuddin, G.; Alanazi, A.M. Primeness of Relative Annihilators in BCK-Algebra. Symmetry 2020, 12, 286. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Borzooei, R.A.; Bakhshi, M.; Jun, Y.B. Intuitionistic Fuzzy Soft Hyper BCK Algebras. Symmetry 2019, 11, 399. [Google Scholar] [CrossRef] [Green Version]
- Hoškova-Mayerova, Š.; Onasanya, B.O. Results on Functions on Dedekind Multisets. Symmetry 2019, 11, 1125. [Google Scholar] [CrossRef] [Green Version]
- Chvalina, J.; Smetana, B. Series of Semihypergroups of Time-Varying Artificial Neurons and Related Hyperstructures. Symmetry 2019, 11, 927. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Křehlik, Š.; Ovaliadis, K. Elements of Hyperstructure Theory in UWSN Design and Data Aggregation. Symmetry 2019, 11, 734. [Google Scholar] [CrossRef] [Green Version]
- Luqman, A.; Akram, M.; Koam, A.N.A. An m-Polar Fuzzy Hypergraph Model of Granular Computing. Symmetry 2019, 11, 483. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Habib, A.; Koam, A.N.A. A Novel Description on Edge-Regular q-Rung Picture Fuzzy Graphs with Application. Symmetry 2019, 11, 489. [Google Scholar] [CrossRef]
- Massouros, C.G. Hypercompositional Algebra and Applications; MDPI: Basel, Switzerland, 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristea, I. Special Issue on Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures. Symmetry 2022, 14, 2160. https://doi.org/10.3390/sym14102160
Cristea I. Special Issue on Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures. Symmetry. 2022; 14(10):2160. https://doi.org/10.3390/sym14102160
Chicago/Turabian StyleCristea, Irina. 2022. "Special Issue on Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures" Symmetry 14, no. 10: 2160. https://doi.org/10.3390/sym14102160
APA StyleCristea, I. (2022). Special Issue on Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures. Symmetry, 14(10), 2160. https://doi.org/10.3390/sym14102160