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Abstract: An m-polar fuzzy model plays a vital role in modeling of real-world problems that involve
multi-attribute, multi-polar information and uncertainty. The m-polar fuzzy models give increasing
precision and flexibility to the system as compared to the fuzzy and bipolar fuzzy models. An m-polar
fuzzy set assigns the membership degree to an object belonging to [0, 1]m describing the m distinct
attributes of that element. Granular computing deals with representing and processing information
in the form of information granules. These information granules are collections of elements combined
together due to their similarity and functional/physical adjacency. In this paper, we illustrate
the formation of granular structures using m-polar fuzzy hypergraphs and level hypergraphs.
Further, we define m-polar fuzzy hierarchical quotient space structures. The mappings between the
m-polar fuzzy hypergraphs depict the relationships among granules occurring at different levels.
The consequences reveal that the representation of the partition of a universal set is more efficient
through m-polar fuzzy hypergraphs as compared to crisp hypergraphs. We also present some
examples and a real-world problem to signify the validity of our proposed model.

Keywords: m-polar fuzzy hypergraphs; m-polar fuzzy equivalence relation; level hypergraphs;
granular computing; application

1. Introduction

Granular computing (GrC) is defined as an identification of techniques, methodologies, tools, and
theories that yields the advantages of clusters, groups, or classes, i.e., the granules. The terminology
was first introduced by Lin [1]. The fundamental concepts of GrC are utilized in various disciplines,
including machine learning, rough set theory, cluster analysis, and artificial intelligence. Different
models have been proposed to study the various issues occurring in GrC, including classification of
the universe, illustration of granules, and the identification of relations among granules. For example,
the procedure of problem solving through GrC can be considered as subdivisions of the problem at
multiple levels, and these levels are linked together to construct a hierarchical space structure (HSS).
Thus, this is a way of dealing with the formation of granules and the switching between different
granularities. Here, the word “hierarchy” implies the methodology of hierarchical analysis in solving
a problem and human activities [2]. To understand this methodology, let us consider an example of a
national administration in which the complete nation is subdivided into various provinces. Further,
we divide every province into various divisions, and so on. The human activities and problem
solving involve the simplification of original complicated problem by ignoring some details rather than
thinking about all points of the problem. This rationalized model is then further refined till the issue is
completely solved. Thus, we resolve and interpret the complex problems from the weaker grain to
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the stronger one or from highest rank to lowest or from universal to particular, etc. This technique is
called hierarchical problem solving. It is further acknowledged that the hierarchical strategy is the only
technique that is used by humans to deal with complicated problems, and it enhances competency and
efficiency. This strategy is also known as the multi-GrC.

Hypergraphs, as an extension of classical graphs, experience various properties that appear very
effective and useful as the basis of different techniques in many fields, including problem solving,
declustering, and databases [3]. The real-world problems that are represented and solved using
hypergraphs have achieved very good impacts. The formation of hypergraphs is the same as that of
granule structures, and the relations between the vertices and hyperedges of hypergraphs can depict the
relationships of granules and objects. A hyperedge can contain n vertices representing n-ary relations
and hence can provide more effective analysis and description of granules. Many researchers have
used hypergraph methods to study the clustering of complex documentation by means of GrC and
investigated the database techniques [4,5]. Chen et al. [6] proposed a model of GrC based on the crisp
hypergraph. They related a crisp hypergraph to a set of granules and represented the hierarchical
structures using series of hypergraphs. They proved a hypergraph model as a visual description of GrC.

Zadeh’s [7] fuzzy set (FS) has acquired greater attention by researchers in a wide range of scientific
areas, including management sciences, robotics, decision theory, and many other disciplines. Zhang [8]
generalized the idea of FSs to the concept of bipolar fuzzy sets (BFSs) whose membership degrees range
over the interval [−1, 1]. An m-polar fuzzy set (m-PFS), as an extension of FS and BFS, was proposed by
Chen et al. [9], and it proved that two-PFSs and BFSs are equivalent concepts in mathematics. An m-PFS
corresponds to the existence of “multipolar information” because there are many real-world problems
that take data or information from n agents (n ≥ 2). For example, in the case of telecommunication
safety, the exact membership degree lies in the interval [0, 1]n (n ≈ 7× 109) as the distinct members are
monitored at different times. Similarly, there are many problems that are based on n logic implication
operators (n ≥ 2), including rough measures, ordering results of magazines, fuzziness measures, etc.

To handle uncertainty in the representation of different objects or in the relationships between
them, fuzzy graphs (FGs) were defined by Rosenfeld [10]. m-Polar fuzzy graphs and their interesting
properties were discussed by Akram et al. [11] to deal with the network models possessing
multi-attribute and multipolar data. As an extension of FGs, Kaufmann [12] defined fuzzy hypergraphs.
Gong and Wang [13] investigated fuzzy classification by combining fuzzy hypergraphs with the fuzzy
formal concept analysis and fuzzy information system. Although, many researchers have explored the
construction of granular structures using hypergraphs in various fields, there are many graph theoretic
problems that may contain uncertainty and vagueness. To overcome the problems of uncertainty
in models of GrC, Wang and Gong [14] studied the construction of granular structures by means of
fuzzy hypergraphs. They concluded that the representation of granules and partition is more efficient
through the fuzzy hypergraphs. Novel applications and transversals of m-PF hypergraphs were
defined by Akram and Sarwar [15,16]. Further, Akram and Shahzadi [17] studied various operations
on m-PF hypergraphs. Akram and Luqman [18,19] introduced intuitionistic single-valued and bipolar
neutrosophic hypergraphs. The basic purpose of this work is to develop an interpretation of granular
structures using m-PF hypergraphs. In the proposed model, the vertex of the m-PF hypergraph denotes
an object, and an m-PF hyperedge represents a granule. The “refinement” and “coarsening” operators
are defined to switch the different granularities from coarser to finer and vice versa, respectively.

The rest of the paper is arranged as follows: In Section 2, some fundamental concepts of m-PF
hypergraphs are reviewed. The uncertainty measures and information entropy of m-polar fuzzy
hierarchical quotient space structure are discussed. An m-PFHQSS is developed based on the m-PF
equivalence relation. In the next section, we construct an m-PF hypergraph model of GrC. The partition
and covering of granules are defined in the same section. The method of bottom-up construction is
explained by an algorithm. In Section 4, we construct a model of GrC using level hypergraphs based
on the m-PF equivalence relation and explain the procedure of bottom-up construction through an
example. Section 5 deals with some concluding remarks and future studies.
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2. Fundamental Features of m-Polar Fuzzy Hypergraphs

In this section, we review some basic concepts from [9,11,15,16].

Definition 1. An m-polar fuzzy set (m-PFS) M on a universal set Z is defined as a mapping M:Z → [0, 1]m.
The membership degree of each element z ∈ Z is represented by M(z) = (P1 ◦M(z),P2 ◦M(z),P3 ◦M(z), . . .,
Pm ◦M(z)), where Pj ◦M(z) : [0, 1]m → [0, 1] is defined as the jth projection mapping.

Note that the mth power of [0, 1] (i.e., [0, 1]m) is regarded as a partially-ordered set with the
point-wise order ≤, where m is considered as an ordinal number (m = n|n < m when m > 0), ≤ is
defined as z1 ≤ z2 if and only if Pj(z1) ≤ Pj(z2), for every 1 ≤ j ≤ m. 0 = (0, 0, · · · , 0) and
1 = (1, 1, · · · , 1) are the smallest and largest values in [0, 1]m, respectively.

Definition 2. Let M be an m-PFS on Z. An m-polar fuzzy relation (m-PFR) N = (P1 ◦ N, P2 ◦ N,
P3 ◦ N, . . ., Pm ◦ N) on M is a mapping N : M → M such that N(z1z2) ≤ inf{M(z1), M(z2)}, for all
z1, z2 ∈ Z, i.e., for each 1 ≤ j ≤ m, Pj ◦ N(z1z2) ≤ inf{Pj ◦M(z1),Pj ◦M(z2)}, where Pj ◦M(z) and
Pj ◦ N(z1z2) denote the jth membership degree of an element z ∈ Z and the pair z1z2, respectively.

Definition 3. An m-polar fuzzy graph (m-PFG) on Z is defined as an ordered pair of functions G = (C, D),
where C : Z → [0, 1]m is an m-polar vertex set and D : Z× Z → [0, 1]m is an m-polar edge set of G such that
D(wz) ≤ inf{C(w), C(z)}, i.e., Pj ◦ D(wz) ≤ inf{Pj ◦ C(w),Pj ◦ C(z)}, for all w, z ∈ Z and 1 ≤ j ≤ m.

Definition 4. An m-polar fuzzy hypergraph (m-PFHG) on a non-empty set Z is a pair H = (A, B), where
A = {M1,M2, . . ., Mr} is a finite family of m-PFSs on Z and B is an m-PFR on m-PFSs Mk such that:

• B(Ek) = B({z1, z2, · · · , zl}) ≤ inf{Mk(z1),Mk(z2),· · · ,Mk(zl)},

•
r⋃

k=1
supp(Mk) = Z, for all Mk ∈ A and for all z1, z2, · · · , zl ∈ Z.

Definition 5. Let H = (A, B) be an m-PFHG and τ ∈ [0, 1]m. Then, the τ-cut level set of an m-PFS M is
defined as,

Mτ = {z|Pj ◦M(z) ≥ tj, 1 ≤ j ≤ m}, τ = (t1, t2, · · · , tm).

Hτ = (Aτ , Bτ) is called a τ-cut level hypergraph of H, where Aτ =
r⋃

i=1
Miτ .

For further concepts and applications, readers are referred to [20–23].

2.1. Uncertainty Measures of m-Polar Fuzzy Hierarchical Quotient Space Structure

The question of distinct membership degrees of the same object from different scholars has arisen
because of various ways of thinking about the interpretation of different functions dealing with the
same problem. To resolve this issue, FS was structurally defined by Zhang and Zhang [24], which was
based on quotient space (QS) theory and the fuzzy equivalence relation (FER) [25]. This definition
provides some new initiatives regarding membership degree, called a hierarchical quotient space
structure (HQSS) of an FER. By following the same concept, we develop an HQSS of an m-polar FER.

Definition 6. An m-polar fuzzy equivalence relation (PFER) on a non-empty finite set Z is called an m-PF
similarity relation if it satisfies,

1. N(z, z) = (P1 ◦ N(z, z), P2 ◦ N(z, z),. . ., Pm ◦ N(z, z)) = (1, 1, · · · , 1), for all z ∈ Z,
2. N(u, w) = (P1 ◦ N(u, w), P2 ◦ N(u, w),. . ., Pm ◦ N(u, w)) = (P1 ◦ N(w, u), P2 ◦ N(w, u),. . .,

Pm ◦ N(w, u)) = N(w, u), for all u, w ∈ Z.
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Definition 7. An m-PFER on a non-empty finite set Z is called an m-polar fuzzy equivalence relation (m-PFER)
if it satisfies the conditions,

1. N(z, z) = (P1 ◦ N(z, z), P2 ◦ N(z, z),. . ., Pm ◦ N(z, z)) = (1, 1, · · · , 1), for all z ∈ Z,
2. N(u, w) = (P1 ◦ N(u, w), P2 ◦ N(u, w),. . ., Pm ◦ N(u, w)) = (P1 ◦ N(w, u), P2 ◦ N(w, u),. . .,

Pm ◦ N(w, u)) = N(w, u), for all u, w ∈ Z,
3. for all u, v, w ∈ Z, N(u, w) = sup

v∈Z
{min(N(u, v), N(v, w))}, i.e.,

Pj ◦ N(u, w) = sup
v∈Z
{min(Pj ◦ N(u, v),Pj ◦ N(v, w))}, 1 ≤ j ≤ m.

Definition 8. An m-polar fuzzy quotient space (m-PFQS) is denoted by a triplet (Z, C̃, N), where Z is a finite
domain, C̃ represents the attributes of Z, and N represents the m-PF relationship between the objects of universe
Z, which is called the structure of the domain.

Definition 9. Let zi and zj be two objects in the universe Z. The similarity between zi, zj ∈ Z having the
attribute c̃k is defined as:

N(zi, zj) =
|c̃ik ∩ c̃jk|
|c̃ik ∪ c̃jk|

,

where c̃ik represents that object zi possesses the attribute c̃k and c̃jk represents that object zj possesses the attribute c̃k.

Proposition 1. Let N be an m-PFR on a finite domain Z and Nτ= {(x, w)|Pj ◦ N(x, w) ≥ tj, 1 ≤ j ≤ m},
τ = (t1, t2, · · · , tj) ∈ [0, 1]. Then, Nτ is an ER on Z and is said to be the cut-equivalence relation of N.

Proposition 1 represents that Nτ is a crisp relation, which is equivalence on Z, and its knowledge
space is given as ξNτ (X) = X/Nτ .

The value domain of an ER N on Z is defined as D = {N(w, y)|w, y ∈ Z} such that:

Pj ◦ Z(w) ∧ Pj ◦ Z(y) ∧ Pj ◦ N(x, y) > 0, 1 ≤ j ≤ m.

Definition 10. Let N be an m-PFER on a finite set Z and D be the value domain of N. The set given by
ξZ(N) = {Z/Nτ |τ ∈ D} is called the m-polar fuzzy hierarchical quotient space structure (m-PFHQS) of N.

Example 1. Let Z = {w1, w2, w3, w4, w5, w6} be a finite set of elements and N1 be a four-PFER on Z;
the relation matrix M̃N1 corresponding to N1 is given as follows:

M̃N1 =


(1, 1, 1, 1) (0.4, 0.4, 0.5, 0.5) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4) (0.5, 0.5, 0.4, 0.4)

(0.4, 0.4, 0.5, 0.5) (1, 1, 1, 1) (0.8, 0.8, 0.9, 0.9) (0.8, 0.8, 0.6, 0.6) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.9, 0.9) (1, 1, 1, 1) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (1, 1, 1, 1) (0.7, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.8, 0.8, 0.6, 0.6) (0.6, 0.6, 0.7, 0.7) (0.7, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.5, 0.5, 0.4, 0.4) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

 .

Its corresponding m-PFHQSS is given as,

Z/N1τ1 = Z/N1(t1,t2,t3,t4)
= {{w1, w2, w3, w4, w5, w6}},

Z/N1τ2 = Z/N1(t′1,t′2,t′3,t′4)
= {{w1}, {w2, w3, w4, w5, w6}},

Z/N1τ3 = Z/N1(t′′1 ,t′′2 ,t′′3 ,t′′4 )
= {{w1}, {w2, w3, w4, w5}, {w6}},

Z/N1τ4 = Z/N1(t′′′1 ,t′′′2 ,t′′′3 ,t′′′4 ) = {{w1}, {w2, w3}, {w4, w5}, {w6}},
Z/N1τ5 = Z/N1(t′′′′1 ,t′′′′2 ,t′′′′3 ,t′′′′4 ) = {{w1}, {w2, w3}, {w4}, {w5}, {w6}},

Z/N1τ6 = Z/N1(t′′′′′1 ,t′′′′′2 ,t′′′′′3 ,t′′′′′4 ) = {{w1}, {w2}, {w3}, {w4}, {w5}, {w6}},
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where:

0 < τ1 = (t1, t2, t3, t4) ≤ 0.4,

0.4 < τ2 = (t′1, t′2, t′3, t′4) ≤ 0.5,

0.5 < τ3 = (t′′1 , t′′2 , t′′3 , t′′4 ) ≤ 0.6,

0.6 < τ4 = (t′′′1 , t′′′2 , t′′′3 , t′′′4 ) ≤ 0.7,

0.7 < τ5 = (t′′′′1 , t′′′′2 , t′′′′3 , t′′′′4 ) ≤ 0.8,

0.8 < τ6 = (t′′′′′1 , t′′′′′2 , t′′′′′3 , t′′′′′4 ) ≤ 1.

Hence, a four-PFQSS is given as ξZ(N1)
= {Z/Nτ1 , Z/Nτ2 , Z/Nτ3 , Z/Nτ4 , Z/Nτ5 , Z/Nτ6} and is

shown in Figure 1.
It is worth noting that the same HQSS can be formed by different four-PFERs. For instance, the relation

matrix M̃N2 of four-PFER generates the same HQSS as given by M̃N1 . The relation matrix M̃N2 is given as,

M̃N1 =


(1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4) (0.6, 0.6, 0.4, 0.4)

(0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5) (0.2, 0.2, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (1, 1, 1, 1) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7) (0.7, 0.7, 0.7, 0.7)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (1, 1, 1, 1) (0.8, 0.8, 0.7, 0.8) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.8, 0.8, 0.7, 0.8) (1, 1, 1, 1) (0.6, 0.6, 0.5, 0.5)
(0.6, 0.6, 0.4, 0.4) (0.2, 0.2, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7) (0.6, 0.6, 0.5, 0.5) (0.6, 0.6, 0.5, 0.5) (1, 1, 1, 1)

 .

Furthermore, assuming the number of blocks in every distinct layer of this HQSS, a pyramid model can
also be constructed as shown in Figure 2.

Figure 1. A four-polar fuzzy hierarchical quotient space structure.
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Figure 2. Pyramid model of m-PFHQSS.

2.2. Information Entropy of m-PFHQSS

Definition 11. Let N be an m-PFER on Z. Let ξZ(N) = {Z(τ1), Z(τ2), Z(τ3), · · · , Z(τj)} be its
corresponding HQSS, where τi = (t1i, t2i, · · · , tmi), i = 1, 2,· · · ,j and Z(τj) < Z(τj−1) < · · · < Z(τ1).
Then, the partition sequence of ξZ(N) is given as P(ξZ(N)) = {P1, P2, P3, · · · , Pj}, where Pi = |Z(τi)|,
i = 1, 2, · · · , j, and |.| denotes the number of elements in a set.

Definition 12. Let N be an m-PFER on Z. Let ξZ(N) = {Z(τ1), Z(τ2), Z(τ3), · · · , Z(τj)} be its
corresponding HQSS, where τi = (t1i, t2i, · · · , tmi), i = 1, 2,· · · ,j, and Z(τj) < Z(τj−1) < · · · < Z(τ1),
P(ξZ(N)) = {P1, and P2, · · · , Pj} is the partition sequence of ξZ(N). Assume that Z(τi) = {Zi1, Zi2, · · · ,

ZiPi}. The information entropy EZ(τi)
is defined as EZ(τi)

= −
Pi
∑

r=1

|Zir |
|Z| ln

(
|Zir |
|Z|

)
.

Theorem 1. Let N be an m-PFER on Z. Let ξZ(N) = {Z(τ1), Z(τ2), Z(τ3), · · · , Z(τj)} be its corresponding
HQSS, where τi = (t1i,t2i,· · · , tmi), i = 1, 2,· · · ,j, then the entropy sequence E(ξZ(N)) = {EZ(τ1)

, EZ(τ2)
,

· · · , EZ(τj)
} increases monotonically and strictly.

Proof. The terminology of HQSS implies that Z(τj) < Z(τj−1) < · · · < Z(τ1), i.e., Z(τj−1) is a quotient
subspace of Z(τj). Suppose that Z(τi) = {Zi1, Zi2, · · · , ZiPi} and Z(τi−1) = {Z(i−1)1, Z(i−1)2, · · · ,
Z(i−1)P(i−1)

}, then every sub-block of Z(τi−1) is an amalgam of sub-blocks of Z(τi). WLOG, it is
assumed that only one sub-block Zi−1,j in Z(τi−1) is formed by the combination of two sub-blocks Zir,
Zis in Z(τi), and all other remaining blocks are equal in both sequences. Thus,

EZ(τj−1)
= −

Pi−1

∑
r=1

|Zi−1,r|
|Z| ln

( |Zi−1,r|
|Z|

)

= −
Pj−1

∑
r=1

|Zi−1,r|
|Z| ln

( |Zi−1,r|
|Z|

)
−

Pi−1

∑
r=j+1

|Zi−1,r|
|Z| ln

( |Zi−1,r|
|Z|

)
−
|Zi−1,j|
|Z| ln

( |Zi−1,j|
|Z|

)

= −
Pj−1

∑
r=1

|Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
−

Pi

∑
r=j+1

|Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
− |Zi,r|+ |Zi,s|

|Z| ln
( |Zi,r|+ |Zi,s|

|Z|

)
.
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Since:

|Zi,r|+ |Zi,s|
|Z| ln

( |Zi,r|+ |Zi,s|
|Z|

)
=
|Zi,r|
|Z| ln

( |Zi,r|+ |Zi,s|
|Z|

)
+
|Zi,s|
|Z| ln

( |Zi,r|+ |Zi,s|
|Z|

)
>
|Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
+
|Zi,s|
|Z| ln

( |Zi,s|
|Z|

)
.

Therefore, we have:

EZ(τj−1)
< −

Pj−1

∑
r=1

|Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
−

Pi

∑
r=j+1

|Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
− |Zi,r|
|Z| ln

( |Zi,r|
|Z|

)
− |Zi,s|
|Z| ln

( |Zi,s|
|Z|

)
= EZ(τj)

, (2 ≤ j ≤ n).

Hence, EZ(τ1)
< EZ(τ2)

< EZ(τ2)
< · · · < EZ(τj)

.

Definition 13. Let Z = {s1, s2, s3, · · · , sn} be a non-empty set of the universe, and let Pd(Z) = {Z1, Z2,
Z3, · · · , Zd} be a partition space (PS) of Z, where |Pd(Z)| = d, then Pd(Z) is called the d-order partition
space(d-OPS) on Z.

Definition 14. Let Z be a finite non-empty universe, and let Pd(Z) = {Z1, Z2, Z3, · · · , Zd} be a d-OPS on Z.
Let |Z1| = l1, |Z2| = l2, · · · , |Zd| = ld, and the sequence {l1, l2, · · · , ld} is arranged in increasing order, then we
got a new sequence χ(d) = {l′1, l′2, · · · , l′d}, which is also increasing and called a sub-block sequence of Pd(Z).

Note that two different d-OPSs on Z may possess the similar sub-block sequence χ(d).

Definition 15. Let Z be a finite non-empty universe, and let Pd(Z) = {Z1, Z2, Z3, · · · , Zd} be a partition
space of Z. Suppose that χ1(d) = {l′1, l′2, · · · , l′d} is a sub-block sequence of Pd(Z), then the ω-displacement
of χ1(d) is defined as an increasing sequence χ2(d) = {l′1, l′2, · · · , l′r + 1, · · · , l′s − 1, · · · , l′d}, where r < s,
l′r + 1 < l′s − 1.

An ω-displacement is obtained by subtracting one from some bigger term and adding one to some smaller
element such that the sequence keeps its increasing property.

Theorem 2. A single time ω-displacement χ2(d), which is derived from χ1(d), satisfies E(χ1(d)) <

E(χ2(d)).

Proof. Let χ1(d) = {l′1, l′2, · · · , l′d} and χ2(d) = {l′1, l′2, · · · , l′r + 1, · · · , l′s− 1, · · · , l′d}, l′1 + l′2 + · · ·+ l′d =

k, then we have:

E(χ2(t)) = −
d

∑
j=1

l′l
k

ln
l′l
k
+

l′r
k

ln
l′r
k
+

l′s
k

ln
l′s
k
− l′r + 1

k
ln

l′r + 1
k
− l′s − 1

k
ln

l′s − 1
k

.

Let g(z) = − z
k ln z

k −
l−z

k ln l−z
k , where l = l′r + l′s and g′(z) = 1

k ln l−z
z . Suppose that g′(z) = 0,

then we obtain a solution, i.e., z = l
2 . Furthermore, g′′(z) = −l

k(l−z)z < 0, 0 ≤ z ≤ l
2 , and g(z) is

increasing monotonically. Let z1 = l′r and z2 = l′r + 1, l′r + 1 < l′s − 1, i.e., z1 < z2 ≤ l
2 = l′r+l′s

2 . Since
g(z) is monotone, then g(z2)− g(z1) > 0. Thus,

l′r
k

ln
l′r
k
+

l′s
k

ln
l′s
k
− l′r + 1

k
ln

l′r + 1
k
− l′s − 1

k
ln

l′s − 1
k

> 0.
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Hence,

E(χ2(d)) = −
d

∑
j=1

l′l
k

ln
l′l
k
+

l′r
k

ln
l′r
k
+

l′s
k

ln
l′s
k
− l′r + 1

k
ln

l′r + 1
k
− l′s − 1

k
ln

l′s − 1
k

> −
(

l′r + 1
k

ln
l′r + 1

k
+

l′s − 1
k

ln
l′s − 1

k

)
> −

t

∑
j=1

l′l
k

ln
l′l
k

= E(χ1(d)).

This completes the proof.

3. An m-Polar Fuzzy Hypergraph Model of Granular Computing

A granule is defined as a collection of objects or elements having thhe same attributes or
characteristics and can be treated as a single unit.

Definition 16. An object space is defined as a system (Z, N), where Z is a universe of objects or elements and
N = {n1, n2, n3, · · · , nk}, k = |Z| is a family of relations between the elements of Z. For r ≤ k, nr ∈ N,
nr ⊆ Z× Z× · · · × Z, if (z1, z2, · · · , zr) ⊆ nr, then there exists an r-array relation nr on (z1, z2, · · · , zn).

A granule is affiliated with a particular level. The whole view of granules at every level can be
taken as a complete description of a particular problem at that level of granularity [6]. An m-PFHG
formed by the set of relations N and membership degrees Z(w) = Pj ◦ Z(w), 1 ≤ j ≤ m of objects in
the space is considered as a specific level of the GrC model. All m-PF hyperedges in that m-PFHG can
be regarded as the complete granule at that particular level.

Definition 17. A partition of a set Z established on the basis of relations between objects is defined as a
collection of non-empty subsets, which are pairwise disjoint and whose union is the whole of Z. These subsets
that form the partition of Z are called blocks. Every partition of a finite set Z contains the finite number of blocks.
Corresponding to the m-PFHG, the constraints of partition ψ = {Ei|1 ≤ i ≤ n} can be stated as follows,

• each Ei is non-empty,
• for i 6= j, Ei ∩ Ej = ∅,
• ∪{supp(Ei)|1 ≤ i ≤ n} = Z.

Definition 18. A covering of a set Z is defined as a collection of non-empty subsets whose union is the whole of
Z. The conditions for the covering c = {Ei|1 ≤ i ≤ n} of Z are stated as,

• each Ei is non-empty,
• ∪{supp(Ei)|1 ≤ i ≤ n} = Z.

The corresponding definitions in classical hypergraph theory are completely analogous to the
above Definitions 17 and 18. In a crisp hypergraph, if the hyperedges Ei and Ej do not intersect each
other, i.e., Ei, Ej ∈ E, and Ei ∩ Ej = ∅, then these hyperedges form a partition of granules at this
level. Furthermore, if Ei, Ej ∈ E, and Ei ∩ Ej 6= ∅, i.e., the hyperedges Ei and Ej intersect each other,
then these hyperedges form a covering at this level.

Example 2. Let Z = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}. The partition and covering of Z is given in
Figures 3 and 4, respectively.
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Figure 3. A partition of granules at a level.

Figure 4. A covering of granules at a level.

A set-theoretic way to study the GrC model uses the following operators in an m-PFHG model.

Definition 19. Let G1 and G2 be two granules in our model and the m-PF hyperedges, and E1, E2 represent
their external properties. The union of two granules G1 ∪ G2 is defined as a larger m-PF hyperedge that contains
the vertices of both E1 and E2. If wi ∈ G1 ∪ G2, then the membership degree G1 ∪ G2(wi) of wi in larger granule
G1 ∪ G2 is defined as follows:

Pj ◦ (G1 ∪ G2)(wi) =


max{Pj ◦ (E1)(wi),Pj ◦ (E2)(wi)}, if wi ∈ E1 and wi ∈ E2,

Pj ◦ (E1)(wi), if wi ∈ E1 and wi 6∈ E2,

Pj ◦ (E2)(wi), if wi ∈ E2 and wi 6∈ E1,

1 ≤ j ≤ m.

Definition 20. Let G1 and G2 be two granules in our model and the m-PF hyperedges, and E1, E2 represent
their external properties. The union of two granules G1 ∩ G2 is defined as a larger m-PF hyperedge that contains
the vertices of both E1 and E2. If wi ∈ G1 ∪ G2, then the membership degree G1 ∩ G2(wi) of wi in smaller
granule G1 ∩ G2 is defined as follows:

Pj ◦ (G1 ∩ G2)(wi) =


min{Pj ◦ (E1)(wi),Pj ◦ (E2)(wi)}, if wi ∈ E1 and wi ∈ E2,

Pj ◦ (E1)(wi), if wi ∈ E1 and wi 6∈ E2,

Pj ◦ (E2)(wi), if wi ∈ E2 and wi 6∈ E1,

1 ≤ j ≤ m.
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Definition 21. Let G1 and G2 be two granules in our model and the m-PF hyperedges E1, E2 represent their
external properties. The difference between two granules G1 − G2 is defined as a smaller m-PF hyperedge that
contains those vertices belonging to E1, but not to E2.
Note that, if a vertex wi ∈ E1 and wi 6∈ E2, then:

Pj ◦ (E1)(wi) > 0 and Pj ◦ (E2)(wi) = 0, 1 ≤ j ≤ m.

Definition 22. A granule G1 is said to be the sub-granule of G2, if each vertex wi of E1 also belongs to E2, i.e.,
E1 ⊆ E2. In such a case, G2 is called the super-granule of G1.

Note that, if E(wi) = {0, 1}, then all the above described operators are reduced to the classical
hypergraph theory of GrC.

Formation of Hierarchical Structures

We can interpret a problem at distinct levels of granularities. These granular structures at different
levels produce a set of m-PFHGs. The upper set of these hypergraphs constructs a hierarchical
structure at distinct levels. The relationships between granules are expressed by the lower level, which
represents the problem as a concrete example of granularity. The relationships between granule sets
are expressed by the higher level, which represents the problem as an abstract example of granularity.
Thus, the single-level structures can be constructed and then can be subdivided into hierarchical
structures using the relational mappings between different levels.

Definition 23. Let H1 = (A1, B1) and H2 = (A2, B2) be two m-PFHGs. In a hierarchy structure, their level
cuts are H1

τ and H2
τ , respectively, where τ = (t1, t2, · · · , tm). Let τ ∈ [0, 1] and Pj ◦ E1

i ≥ tj,1 ≤ j ≤ m,
where E1

i ∈ B1, then a mapping φ : H1
τ → H2

τ from H1
τ to H2

τ maps the E1
τi

in H1
τ to a vertex w2

i in H2
τ .

Furthermore, the mapping φ−1 : H2
τ → H1

τ maps a vertex w2
i in H2

τ to the τ-cut of the m-PF hyperedge E1
τi

in
H1

τi
. It can be denoted as φ(E1

τi
) = w2

i or φ−1(w2
i ) = E1

τi
, for 1 ≤ i ≤ n.

In an m-PFHG model, the mappings are used to describe the relations among different levels of
granularities. At each distinct level, the problem is interpreted w.r.t the m-PF granularity of that level.
The mapping associates the different descriptions of the same problem at distinct levels of granularities.
There are two fundamental types to construct the method of hierarchical structures, the top-down
construction procedure and the bottom-up construction procedure [26].

A formal discussion is provided to interpret an m-PFHG model in GrC, which is more compatible
with human thinking. Zhang and Zhang [25] highlighted that one of the most important and
acceptable characteristic of human intelligence is that the same problem can be viewed and analyzed at
different granularities. Their claim is that the problem can not only be solved using various worlds of
granularities, but also can be switched easily and quickly. Hence, the procedure of solving a problem
can be considered as the calculations at different hierarchies within that model

A multi-level granularity of the problem is represented by an m-PFHG model, which allows the
problem solvers to decompose it into various minor problems and transform it into other granularities.
The transformation of the problem in other granularities is performed by using two operators, i.e.,
zooming-in and zooming-out operators. The transformation from the weaker level to the finer level of
granularity is done by the zoom-in operator, and the zoom-out operator deals with the shifting of the
problem from coarser to finer granularity.

Definition 24. Let H1 = (A1, B1) and H2 = (A2, B2) be two m-PFHGs, which are considered as two
levels of hierarchical structures, and H2 owns a coarser granularity than H1. Suppose H1

τ = (Z1, E1
τ) and

H2
τ = (Z2, E2

τ) are the corresponding τ-level hypergraphs of H1 and H2, respectively. Let e1
i ∈ E1

τ , z1
j ∈ Z1,

e2
j ∈ E2

τ , z2
l , z2

m ∈ Z2, and z2
l , z2

m ∈ e2
j . If φ(e1

i ) = z2
l , then n(z1

j , z2
m) is the relationship between z1

j , and z2
m is

obtained by the characteristics of granules.
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Definition 25. Let the hyperedge φ−1(zl) be a vertex at a new level and the relation between hyperedges in this
level be the same as that of relationship between vertices at the previous level. This is called the zoom-in operator
and transforms a weaker level to a stronger level. The function r(z1

j , z2
m) defines the relation between vertices of

the original level, as well as the new level.
Let the vertex φ(ei) be a hyperedge at a new level, and the relation between vertices at this level is same as

that of the relationship between hyperedges at the corresponding level. This is called the zoom-out operator and
transforms a finer level to a coarser level.

By using these zoom-in and zoom-out operators, a problem can be viewed at multiple levels of
granularities. These operations allow us to solve the problem more appropriately, and granularity can
be switched easily at any level of problem solving.

In an m-PFHG model of GrC, the membership degrees of elements reflect the actual situation
more efficiently, and a wide variety of complicated problems in uncertain and vague environments
can be presented by means of m-PFHGs. The previous analysis concluded that this model of GrC
generalizes the classical hypergraph model and fuzzy hypergraph model.

Definition 26 ([6]). Let H1 and H2 be two crisp hypergraphs. Suppose that H1 owns a finer m-PF granularity
than H2. A mapping from H1 to H2 ψ : H1 → H2 maps a hyperedge of H1 to the vertex of H2, and the
mapping ψ−1 : H2 → H1 maps a vertex of H2 to the hyperedge of H1.

The procedure of bottom-up construction for the level hypergraph model is illustrated in
Algorithm 1.

Algorithm 1: The procedure of bottom-up construction for the level hypergraph model.

Step 1. Determine an m-PFER matrix according to the actual circumstances.
Step 2. For fixed τ ∈ [0, 1], obtain the corresponding HQSS.
Step 3. Obtain the hyperedges through the HQSS.
Step 4. Granules at the i-level are mapped to the (i + 1)-level.
Step 5. Calculate the m-polar fuzzy relationships between the vertices of the (i + 1)-level, and determine

the m-PFER matrix.
Step 6. Determine the corresponding HQSS according to τ, which is fixed in Step 2.
Step 7. Get the hyperedges at the (i + 1)-level, and the (i + 1)-level of the model is constructed.
Step 8. Step 1–Step 5 are repeated until the whole universe is formulated to a single granule.

Definition 27. Let N be an m-PFER on Z. A coarse-gained universe Z/Nτ can be obtained by using m-PFER,
where [wi]Nτ = {wj ∈ Z|wi Nwj}. This equivalence class [wi]Nτ is considered as an hyperedge in the
level hypergraph.

Definition 28. Let H1 = (Z1, E1) and H2 = (Z2, E2) be level hypergraphs of m-PFHGs, and H2 has weaker
granularity than H1. Suppose that e1

i , e2
j ∈ E1 and w2

i , w2
j ∈ Z2, i, j = 1, 2, · · · , n. The zoom-in operator

ω : H2 → H1 is defined as ω(w2
i ) = e1

i , e1
i ∈ E1. The relations between the vertices of H2 define the

relationships among the hyperedges at the new level. The zoom-in operator of two levels is shown in Figure 5.
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Figure 5. Zoom-in operator.

Remark 1. For all Z′2, Z′′2 ⊆ Z2, we have ω(Z′2) =
⋃

w2
i ∈Z′2

ω(w2
i ) and ω(Z′′2 ) =

⋃
w2

j ∈Z′′2

ω(w2
j ).

Theorem 3. Let H1 = (Z1, E1) and H2 = (Z2, E2) be two levels and ω : H2 → H1 be the zoom-in operator.
Then, for all Z′2, Z′′2 ⊆ Z2, the zoom-in operator satisfies,

(i) ω maps the empty set to an empty set, i.e., ω(∅) = ∅,
(ii) ω(Z2) = E1,

(iii) ω([Z′2]
c) = [ω(Z′2)]

c,
(iv) ω(Z′2 ∩ Z′′2 )= ω(Z′2) ∩ω(Z′′2 ),
(v) ω(Z′2 ∪ Z′′2 )= ω(Z′2) ∪ω(Z′′2 ),

(vi) Z′2 ⊆ Z′′2 if and only if ω(Z′2) ⊆ ω(Z′′2 ).

Proof. (i) It is trivially satisfied that ω(∅) = ∅.
(ii) As we know that for all w2

i ∈ Z2, we have ω(Z′2) =
⋃

w2
i ∈Z′2

ω(w2
i ), since ω(w2

i ) = e1
i , we have

ω(Z′2) =
⋃

w2
i ∈Z′2

ω(w2
i ) =

⋃
e1

i ∈E1

e1
i = E1.

(iii) Let [Z′2]
c = Z′2 and [Z′′2 ]

c = Z′′2 , then it is obvious that Z′2 ∩ Z′2 = ∅ and Z′2 ∪ Z′2 = Z2. It
follows from (ii) that ω(Z2) = E1, and we denote by W ′1 that edge set of H1 on which the vertex
set Z′2 of H2 is mapped under ω, i.e., ω(Z′2) = W ′1. Then, ω([Z′2]

c) = ω(Z′2) =
⋃

w2
i ∈Z′2

ω(w2
i ) =⋃

e1
i ∈W ′1

e1
i = Z′1 and [ω(Z′2)]

c = [
⋃

w2
j ∈Z′2

ω(w2
j )]

c = [
⋃

e1
j ∈E′1

e1
j ]

c = (E′1)
c. Since the relationship between

hyperedges at the new level is the same as that of relations among vertices at the original level,
we have (E′1)

c = Z′1. Hence, we conclude that ω([Z′2]
c) = [ω(Z′2)]

c.
(iv) Assume that Z′2 ∩ Z′′2 = Z̃2, then for all w2

i ∈ Z̃2 implies that w2
i ∈ Z′2 and w2

i ∈ Z′′2 . Further,
we have ω(Z′2 ∩ Z′′2 ) = ω(Z̃2) =

⋃
w2

i ∈Z̃2

ω(w2
i )=

⋃
e1

i ∈Ẽ1

ω(e1
i ) = Ẽ1.

ω(Z′2) ∩ ω(Z′′2 ) = { ⋃
w2

i ∈Z′2

ω(w2
i )} ∩ {

⋃
w2

j ∈Z′′2

ω(w2
j )} =

⋃
e1

i ∈E′1

e1
i ∩

⋃
e1

j ∈E′′1

e1
j = E′1 ∩ E′′1 . Since the

relationship between hyperedges at the new level is the same as that of relations among vertices
at the original level, we have E′1 ∩ E′′1 = Ẽ1. Hence, we conclude that ω(Z′2 ∩Z′′2 )= ω(Z′2)∩ω(Z′′2 ).

(v) Assume that Z′2 ∪ Z′′2 = Z̄2. Then, we have ω(Z′2 ∪ Z′′2 ) = ω(Z̄2) =
⋃

w2
i ∈Z̄2

ω(w2
i )=

⋃
e1

i ∈Ē1

ω(e1
i ) =

Ē1.
ω(Z′2) ∪ ω(Z′′2 ) = { ⋃

w2
i ∈Z′2

ω(w2
i )} ∪ {

⋃
w2

j ∈Z′′2

ω(w2
j )} =

⋃
e1

i ∈E′1

e1
i ∪

⋃
e1

j ∈E′′1

e1
j = E′1 ∪ E′′1 . Since,

the relationship between hyperedges at the new level is the same as that of the relations among
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the vertices at the original level, we have E′1 ∪ E′′1 = Ē1. Hence, we conclude that ω(Z′2 ∪ Z′′2 )=
ω(Z′2) ∪ω(Z′′2 ).

(vi) First we show that Z′2 ⊆ Z′′2 implies that ω(Z′2) ⊆ ω(Z′′2 ). Since Z′2 ⊆ Z′′2 , which implies that
Z′2 ∩ Z′′2 = Z′2 and ω(Z′2) =

⋃
w2

i ∈Z′2

ω(w2
i ) =

⋃
e1

i ∈E′1

e1
i = E′1. Furthermore, ω(Z′′2 ) =

⋃
w2

j ∈Z′′2

ω(w2
j ) =⋃

e1
j ∈E′′1

e1
j = E′′1 . Since the relationship between hyperedges at the new level is the same as that

of relations among vertices at the original level, we have E′1 ⊆ E′′1 , i.e., ω(Z′2) ⊆ ω(Z′′2 ). Hence,
Z′2 ⊆ Z′′2 implies that ω(Z′2) ⊆ ω(Z′′2 ).
We now prove that ω(Z′2) ⊆ ω(Z′′2 ) implies that Z′2 ⊆ Z′′2 . Suppose on the contrary that whenever
ω(Z′2) ⊆ ω(Z′′2 ), then there is at least one vertex w2

i ∈ Z′2, but w2
i 6∈ Z′′2 , i.e., Z′2 * Z′′2 . Since

ω(w2
i ) = e1

i and the relationship between hyperedges at the new level is the same as that of
relations among vertices at the original level, we have e1

i ∈ E′1, but e1
i 6∈ E′′1 , i.e., E′1 * E′′1 , which

is a contradiction to the supposition. Thus, we have that ω(Z′2) ⊆ ω(Z′′2 ) implies that Z′2 ⊆ Z′′2 .
Hence, Z′2 ⊆ Z′′2 if and only if ω(Z′2) ⊆ ω(Z′′2 ).

Definition 29. Let H1 = (Z1, E1) and H2 = (Z2, E2) be level hypergraphs of m-PFHGs, and H2 has weaker
granularity than H1. Suppose that e1

i , e2
j ∈ E1 and w2

i , w2
j ∈ Z2, i, j = 1, 2, · · · , n. The zoom-out operator

σ : H1 → H2 is defined as σ(e1
i ) = w2

i , w2
i ∈ Z2. The zoom-out operator of two levels is shown in Figure 6.

Figure 6. Zoom-out operator.

Theorem 4. Let σ : H1 → H2 be the zoom-out operator from H1 = (Z1, E1) to H2 = (Z2, E2), and let
E′1 ⊆ E1. Then, the zoom-out operator σ satisfies the following properties,

(i) σ(∅) = ∅,
(ii) σ maps the set of hyperedges of H1 onto the set of vertices of H2, i.e., σ(E1) = Z2,

(iii) σ([E′1]
c) = [σ(E′1)]

c.
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Proof. (i) This part is trivially satisfied.
(ii) According to the definition of σ, we have σ(e1

i ) = w2
i . Since, the hyperedges define a partition of

hypergraph, so we have E1 = {e1
1, e1

2, e1
3, · · · , e1

n} =
⋃

e1
i ∈E1

e1
i . Then,

σ(E1) = σ(
⋃

e1
i ∈E1

e1
i ) =

⋃
e1

i ∈E1

σ(e1
i ) =

⋃
w2

i ∈Z2

w2
i = Z2.

(iii) Assume that [E′1]
c = V′1, then it is obvious that E′1 ∩V′1 = ∅ and E′1 ∪V′1 = E1. Suppose on the

contrary, there exists at least one vertex w2
i ∈ σ([E′1]

c), but w2
i 6∈ [σ(E′1)]

c. w2
i ∈ σ([E′1]

c) implies that
w2

i ∈ σ(V′1)⇒ w2
i ∈

⋃
e1
i ∈V′1

σ(e1
i )⇒ w2

i ∈
⋃

e1
i ∈E1\E′1

σ(e1
i ). Since w2

i 6∈ [σ(E′1)]
c ⇒ w2

i ∈ σ(E′1)⇒ w2
i ∈⋃

e1
i ∈E′1

σ(e1
i ), which is a contradiction to our assumption. Hence, σ([E′1]

c) = [σ(E′1)]
c.

Definition 30. Let H1 = (Z1, E1) and H2 = (Z2, E2) be two levels of m-PFHGs, and H1 possesses a stronger
granularity than H2. Let E′1 ⊆ E1, then σ̂(E′1) = {e2

i |e2
i ∈ E2, κ(e2

i ) ⊆ E′1} is called the internal zoom-out
operator. The operator σ̌(E′1) = {e2

i |e2
i ∈ E2, κ(e2

i ) ∩ E′1 6= ∅} is called the external zoom-out operator.

Example 3. Let H1 = (Z1, E1) and H2 = (Z2, E2) be two levels of m-PFHGs, and H1 possesses a stronger
granularity than H2, where E1 = {e1

1, e1
2, e1

3, e1
4, e1

5, e1
6}, and E2 = {e2

1, e2
2, e2

3}. Furthermore, e2
1 = {w2

1, w2
3},

e2
2 = {w2

2, w2
4}, e2

3 = {w2
5, w2

6}, as shown in Figure 7.

Figure 7. Internal and external zoom-out operators.

Let E′1 = {e1
2, e1

3, e1
4, e1

5} be the subset of hyperedges of H1, then we cannot zoom-out to H2 directly; thus,
by using the internal and external zoom-out operators, we have the following relations.
σ̂({e1

2, e1
3, e1

4, e1
5}) = {e2

2},
σ̌({e1

2, e1
3, e1

4, e1
5}) = {e2

1, e2
2, e2

3}.

4. A Granular Computing Model of Web Searching Engines

The most fertile way to direct a search on the Internet is through a search engine. A web search
engine is defined as a system software that is designed to search for queries on the World Wide Web.
A user may utilize a number of search engines to gather information, and similarly, various searchers
may make an effective use of the same engine to fulfill their queries. In this section, we construct
a GrC model of web searching engines based on four-PFHG. In a web searching hypernetwork,
the vertices denote the various search engines. According to the relation set N, the vertices having
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some relationship are united together as a hyperedge, in which the search engines serve only one user.
After assigning the membership degrees to that unit, a four-PF hyperedge is constructed, which is also
considered as a granule. A four-PF hyperedge indicates a user that wants to gather some information,
and the vertices in that hyperedge represent those search engines that provide relevant data to the
user. Let us consider there are ten search engines, and the corresponding four-PFHG H = (A, B) is
shown in Figure 8. Note that A = {e1, e2, e3, · · · , e10}, and B = {U1, U2, U3, U4, U5}.

Figure 8. A four-PFHG representation of web searching.

The incidence matrix of four-PFHG is given in Table 1.

Table 1. Incidence matrix.

A U1 U2 U3 U4 U5

e1 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
e2 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
e3 (0.2, 0.3, 0.3, 0.2) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
e4 (0.2, 0.3, 0.3, 0.2) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)
e5 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
e6 (0, 0, 0, 0) (0.5, 0.4, 0.4, 0.5) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
e7 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0, 0, 0, 0) (0.7, 0.5, 0.4, 0.5)
e8 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)
e9 (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.6, 0.5, 0.5) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)
e10 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0.6, 0.5, 0.5, 0.6) (0, 0, 0, 0)

An m-PFHG model of GrC illustrates a vague set having some membership degrees. In this model,
there are five users that need the search engines to gather information. Note that the membership
degrees of these engines are different for the users because whenever a user selects a search engine,
he/she considers various factors or attributes. Hence, an m-PFHG in GrC is more meaningful
and effective.

Let us suppose that each search engine possesses four attributes, which are core technology,
scalability, content processing, and query functionality. The information table for various search
engines having these attributes is given in Table 2.

The membership degrees of search engines reveal the percentage of attributes possessed by them,
e.g., e1 owns 70% of core technology, 60% scalability, and 50% provide content processing, and the
query functionality of this engine is 70%. The four-PFER matrix describes the similarities between
these search engines and is given as follows,
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P̃N =



1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0
1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0

0.6 0.7 1 0.8 0.8 0.8 0.8 0.8 0.8 0
0.6 0.7 0.8 1 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.7 0.8 0.6 1 0.5 0.5 0.5 0.5 0
0.6 0.7 0.8 0.6 0.5 1 0.6 0.6 0.6 0
0.6 0.7 0.8 0.6 0.5 0.6 1 0.7 0.7 0.7
0.6 0.7 0.8 0.6 0.5 0.6 0.7 1 0.8 0.8
0.6 0.7 0.8 0.6 0.5 0.6 0.7 0.8 1 0.8
0 0 0 0.6 0 0 0.7 0.8 0.8 1


,

where 1 = (1, 1, 1, 1), 0 = (0, 0, 0, 0), 0.5 = (0.5, 0.5, 0.5, 0.5), 0.6 = (0.6, 0.6, 0.6, 0.6), 0.7 =

(0.7, 0.7, 0.7, 0.7), and 0.8 = (0.8, 0.8, 0.8, 0.8). Let τ = (t1, t2, t3, t4) = (0.7, 0.7, 0.7, 0.7), then its
corresponding HQSS is given as follows,

Z/Nτ = Z/N(0.7,0.7,0.7,0.7) = {{e1, e2}, {e1, e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e5},
{e2, e3, e4, e5, e6, e7, e8, e9}, {e2, e3, e4}, {e2, e3, e6},
{e2, e3, e7, e8, e9, e10}, {e7, e8, e9, e10}}.

Note that n1 = n5 = n7 = n10 = {∅}, n2 = {(e1, e2)}, n3 = {(e2, e3, e4),(e2, e3, e5),(e2, e3, e6)},
n4 = {(e7, e8, e9, e10)}, n6 = {e2, e3, e7, e8, e9, e10}, n8 = {e2, e3, e4, e5, e6, e7, e8, e9},
n9 = {e1, e2, e3, e4, e5, e6, e7, e8, e9}. Hence, a single level of the four-PFHG model is constructed and is
shown in Figure 9.

Table 2. The information table.

A Core Technology Scalability Content Processing Query Functionality

e1 0.7 0.6 0.5 0.7
e2 0.6 0.5 0.5 0.6
e3 0.7 0.8 0.8 0.7
e4 0.8 0.6 0.6 0.8
e5 0.7 0.5 0.5 0.7
e6 0.7 0.6 0.5 0.7
e7 0.6 0.5 0.5 0.6
e8 0.7 0.8 0.8 0.7
e9 0.8 0.6 0.6 0.8
e10 0.7 0.8 0.8 0.7

Figure 9. A single-level model of four-PFHG.
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Thus, we can obtain eight hyperedges E1 = {e1, e2}, E2 = {e2, e3, e4}, E3 = {e2, e3, e5}, E4 = {e2,
e3, e6}, E5 = {e7, e8, e9, e10}, E6 = {e2, e3, e7, e8, e9, e10}, E7 = {e2, e3, e4, e5, e6, e7, e8, e9}, E8 = {e1,
e2, e3, e4, e5, e6, e7, e8, e9}. The procedure of constructing this single-level model is explained in the
following flowchart Figure 10.

Figure 10. Flowchart of the single-level model of m-PFHG.

We now illustrate the procedure of bottom-up construction through a concrete example and also
explain our method through Algorithm 2.
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Example 4. Let H = (A, B) be a three-PFHG as shown in Figure 11. Let Z = {z1, z2, z3, z4, z5, z6, z7, z8,
z9, z10, z11, z12}, and B = {E1, E2, E3, E4, E5}.

For t1 = 0.5, t2 = 0.5, and t3 = 0.6, the (0.5, 0.5, 0.6)-level hypergraph of H is given in Figure 12.
By considering the fixed t1, t2, t3 and following Algorithm 2, the bottom-up construction of this model is

given in Figure 13.

Figure 11. A three-polar fuzzy hypergraph.

Figure 12. (0.5, 0.5, 0.6)-level hypergraph of H.
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Figure 13. Bottom-up construction procedure.

The possible method for the bottom-up construction is described in Algorithm 2.
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Algorithm 2: Algorithm for the method of the bottom-up construction.

1. clc
2. Pj ◦ zi=input(‘Pj ◦ zi=’); T=input(‘τ=’); q=1;
3. while q==1
4. [r, m]=size(Pj ◦ zi);N=zeros(r, r);N=input(‘N=’); [r1, r]=size(N); D=ones(r1, m)+1;
5. for l=1:r1
6. if N(l,:)==zeros(1, r)
7. D(l,:)=zeros(1, m);
8. else
9. for k=1:r
10. if N(l, k)==1
11. for j=1:m
12. D(l, j)=min(D(l, j),Pj ◦ zi(k, j));
13. end
14. else
15. s=0;
16. end
17. end
18. end
19. end
20. D
21. Pj ◦ Ei=input(‘Pj ◦ Ei=’);
22. if size(Pj ◦ Ei)==[r1, m]
23. if Pj ◦ Ei <=D
24. if size(T)==[1, m]
25. S=zeros(r1, r);s=zeros(r1, 1);
26. for l=1:r1
27. for k=1:r
28. if N(l, k)==1
29. if Pj ◦ zi(k,:)>=T(1,:)
30. S(l, k)=1;
31. s(l, 1)=s(l, 1)+1;
32. else
33. S(l, k)=0;
34. end
35. end
36. end
37. end
38. S
39. if s==ones(r1, 1)
40. q=2;
41. else
42. Pj ◦ zi = Pj ◦ Ei;
43. end
44. else
45. fprintf(‘error’)
46. end
47. else
48. fprintf(‘error’)
49. end
50. else
51. fprintf(‘error’)
52. end
53. end
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5. Conclusions

Granular computing (GrC) is a general framework to deal with granules, and it captures our
ability to explore the real-world problems at different levels of granularity. It enables us to change
these granularities during problem solving. The fundamental concepts of GrC are discussed in
various environments, including cluster analysis, rough set theory, and artificial intelligence. The main
objective of research in the field of GrC is to construct an effective computational model to deal with
large amounts of information and knowledge. An m-PFS, as an extension of FS and BFS, is used to deal
with multipolar information and multi-object network models. In this paper, we have used an m-PFHG
model such that the benefits of m-PFSs and hypergraphs theory are combined to represent GrC.
We have given a visual description of GrC and considered this model to examine the multi-polarity in
GrC. After concise review of m-PFSs and m-PFHGs, we have applied these concepts in the formation of
HQSSs. In this hypergraph model, we have obtained the granules as hyperedges from m-PFER, and the
partition of the universe has been defined using these granules. Further, we have defined the zoom-in
and zoom-out operators to give a description of the mappings between two hypergraphs. We have
constructed a GrC model for web searching engines, which is based on multi-polar information.
Moreover, we have discussed a concrete example to reveal the validity of our proposed model, and the
procedure is represented through an algorithm. We aim to broaden our study to: (1) m-polar fuzzy
directed hypergraphs, (2) fuzzy rough soft directed hypergraphs, (3) granular computing based
on fuzzy rough and rough fuzzy hypergraphs, (4) hesitant m-polar fuzzy hypergraphs, and (5) the
q-Rung picture fuzzy concept lattice.
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