# Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

*Symmetry*)

## Abstract

**:**

## 1. Introduction

## 2. Methods

## 3. Results and Discussion

#### 3.1. Sample Structures

#### 3.2. Dynamic Magnetic Susceptibility of Pb–In Nanocrystalline Samples

#### 3.2.1. Theory

#### 3.2.2. Results of Measurement and Calculation

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bose, S.; Ayyub, P. A review of finite size effects in quasi-zero dimensional superconductors. Rep. Prog. Phys.
**2014**, 77, 116503. [Google Scholar] [CrossRef] - Arutyunov, K.Y.; Golubev, D.S.; Zaikin, A.D. Superconductivity in one dimension. Phys. Rep.
**2008**, 464, 1–70. [Google Scholar] [CrossRef] [Green Version] - Brun, C.; Cren, T.; Roditchev, D. Review of 2D superconductivity: The ultimate case of epitaxial monolayers. Supercond. Sci. Technol.
**2016**, 30, 013003. [Google Scholar] [CrossRef] [Green Version] - Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy
**2013**, 2, 190–212. [Google Scholar] [CrossRef] - Yeom, S.H.; Kang, B.H.; Kim, K.J.; Kang, S.W. Nanostructures in biosensor—A review. Front.-Biosci.-Landmark
**2011**, 16, 997–1023. [Google Scholar] [CrossRef] [Green Version] - Yakovlev, D.S.; Lvov, D.S.; Emelyanova, O.V.; Dzhumaev, P.S.; Shchetinin, I.V.; Skryabina, O.V.; Egorov, S.V.; Ryazanov, V.V.; Golubov, A.A.; Roditchev, D.; et al. Physical Vapor Deposition Features of Ultrathin Nanocrystals of Bi
_{2}(Te_{x}Se_{1−x})_{3}. J. Phys. Chem. Lett.**2022**, 13, 9221–9231. [Google Scholar] [CrossRef] [PubMed] - Lee, J.H.; Singer, J.P.; Thomas, E.L. Micro-/nanostructured mechanical metamaterials. Adv. Mater.
**2012**, 24, 4782–4810. [Google Scholar] [CrossRef] [PubMed] - Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem
**2012**, 5, 65–75. [Google Scholar] [CrossRef] - Sacépé, B.; Feigel’man, M.; Klapwijk, T.M. Quantum breakdown of superconductivity in low-dimensional materials. Nat. Phys.
**2020**, 16, 734–746. [Google Scholar] [CrossRef] - Anderson, P.W. Theory of dirty superconductors. J. Phys. Chem. Solids
**1959**, 11, 26–30. [Google Scholar] [CrossRef] - von Delft, J.; Zaikin, A.D.; Golubev, D.S.; Tichy, W. Parity-affected superconductivity in ultrasmall metallic grains. Phys. Rev. Lett.
**1996**, 77, 3189. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Smith, R.A.; Ambegaokar, V. Effect of level statistics on superconductivity in ultrasmall metallic grains. Phys. Rev. Lett.
**1996**, 77, 4962. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bezryadin, A. Quantum suppression of superconductivity in nanowires. J. Physics Condens. Matter
**2008**, 20, 043202. [Google Scholar] [CrossRef] [Green Version] - Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H. Superconducting nanowire single-photon detectors: Physics and applications. Supercond. Sci. Technol.
**2012**, 25, 063001. [Google Scholar] [CrossRef] - Xing, Y.; Sun, Y.; Singh, M.; Zhao, Y.F.; Chan, M.H.; Wang, J. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys.
**2013**, 8, 491–508. [Google Scholar] [CrossRef] [Green Version] - Franca, S.; Efremov, D.; Fulga, I. Phase-tunable second-order topological superconductor. Phys. Rev. B
**2019**, 100, 075415. [Google Scholar] [CrossRef] [Green Version] - Grünhaupt, L.; Spiecker, M.; Gusenkova, D.; Maleeva, N.; Skacel, S.T.; Takmakov, I.; Valenti, F.; Winkel, P.; Rotzinger, H.; Wernsdorfer, W.; et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nat. Mater.
**2019**, 18, 816–819. [Google Scholar] [CrossRef] - Ekinci, K.; Valles, J., Jr. Morphology of quench condensed Pb films near the insulator to metal transition. Phys. Rev. Lett.
**1999**, 82, 1518. [Google Scholar] [CrossRef] [Green Version] - Guo, Y.; Zhang, Y.F.; Bao, X.Y.; Han, T.Z.; Tang, Z.; Zhang, L.X.; Zhu, W.G.; Wang, E.; Niu, Q.; Qiu, Z.; et al. Superconductivity modulated by quantum size effects. Science
**2004**, 306, 1915–1917. [Google Scholar] [CrossRef] - Moshchalkov, V.; Gielen, L.; Strunk, C.; Jonckheere, R.; Qiu, X.; Haesendonck, C.V.; Bruynseraede, Y. Effect of sample topology on the critical fields of mesoscopic superconductors. Nature
**1995**, 373, 319–322. [Google Scholar] [CrossRef] - Zgirski, M.; Riikonen, K.P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett.
**2005**, 5, 1029–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Reich, S.; Leitus, G.; Popovitz-Biro, R.; Schechter, M. Magnetization of small lead particles. Phys. Rev. Lett.
**2003**, 91, 147001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Li, W.H.; Yang, C.; Tsao, F.; Lee, K. Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Phys. Rev. B
**2003**, 68, 184507. [Google Scholar] [CrossRef] - Tsai, A.; Chandrasekhar, N.; Chattopadhyay, K. Size effect on the superconducting transition of embedded lead particles in an Al–Cu–V amorphous matrix. Appl. Phys. Lett.
**1999**, 75, 1527–1528. [Google Scholar] [CrossRef] - Li, W.H.; Yang, C.; Tsao, F.; Wu, S.; Huang, P.; Chung, M.; Yao, Y. Enhancement of superconductivity by the small size effect in In nanoparticles. Phys. Rev. B
**2005**, 72, 214516. [Google Scholar] [CrossRef] - Wu, F.Y.; Yang, C.; Wu, C.M.; Wang, C.W.; Li, W.H. Superconductivity in zero-dimensional indium nanoparticles. J. Appl. Phys.
**2007**, 101, 09G111. [Google Scholar] [CrossRef] - Profeta, G.; Calandra, M.; Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys.
**2012**, 8, 131–134. [Google Scholar] [CrossRef] [Green Version] - Szczȩśniak, D.; Szczȩśniak, R. Signatures of nonadiabatic superconductivity in lithium-decorated graphene. Phys. Rev. B
**2019**, 99, 224512. [Google Scholar] [CrossRef] [Green Version] - Strukova, G.K.; Strukov, G.V.; Postnova, E.Y.; Rusanov, A.Y.; Veshchunov, I.S. Mesoscopic models of plants composed of metallic nanowires. J. Bionic Eng.
**2013**, 10, 368–376. [Google Scholar] [CrossRef] [Green Version] - Sun, L.L.; Liu, L.L.; Luo, L.H.; Wu, Y.F.; Shi, J.J.; Cheng, L.; Xu, X.U.; Guo, Y.M. Facile synthesis of flower-like Pd catalyst for direct ethanol solid oxide fuel cell. J. Fuel Chem. Technol.
**2016**, 44, 607–612. [Google Scholar] [CrossRef] - Li, K.; Teng, H.; Dai, X.; Wang, Y.; Wang, D.; Zhang, X.; Yao, Y.; Liu, X.; Feng, L.; Rao, J.; et al. Atomic scale modulation strategies and crystal phase transition of flower-like CoAl layered double hydroxides for supercapacitors. CrystEngComm
**2022**, 24, 2081–2088. [Google Scholar] [CrossRef] - Fu, M.; Zhu, Z.; Chen, W.; Yu, H.; Lv, R. Carbon cloth-supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors. Carbon
**2022**, 199, 520–528. [Google Scholar] [CrossRef] - Riminucci, A.; Schwarzacher, W. Magnetic signature of granular superconductivity in electrodeposited Pb nanowires. J. Appl. Phys.
**2014**, 115, 223910. [Google Scholar] [CrossRef] - Strukova, G.; Strukov, G.; Khodos, I.; Vitkalov, S. Disintegration of nanostructured metals with the formation of nanoparticles in electron microscope. Nano-Struct. Nano-Objects
**2018**, 16, 104–109. [Google Scholar] [CrossRef] - Neminsky, A.; Nikolaev, P.; Shovkun, D.; Laukhina, E.; Yagubskii, E. Temperature dependence of the magnetic field penetration depth in Rb 3 C 60 measured by ac susceptibility. Phys. Rev. Lett.
**1994**, 72, 3092. [Google Scholar] [CrossRef] [PubMed] - Imai, Y.; Nabeshima, F.; Yoshinaka, T.; Miyatani, K.; Kondo, R.; Komiya, S.; Tsukada, I.; Maeda, A. Superconductivity at 5.4 K in β-Bi2Pd. J. Phys. Soc. Jpn.
**2012**, 81, 113708. [Google Scholar] [CrossRef] [Green Version] - Shmyt’ko, I.; Kudrenko, E.; Strukova, G.; Klassen, N. “Isomorphous” phases in nanodispersed powders of rare-earth oxides. Phys. Solid State
**2008**, 50, 1157–1164. [Google Scholar] [CrossRef] - Shmyt’ko, I.; Strukova, G. Fine sructure of Na5Lu9F32 nanocrystallites formed at the initial stages of crystallization. Phys. Solid State
**2009**, 51, 1907–1911. [Google Scholar] [CrossRef] - Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metall.
**1953**, 1, 22–31. [Google Scholar] [CrossRef] - Guinier, A. X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies; Courier Corporation: Chelmsford, MA, USA, 1994. [Google Scholar]
- Liz-Marzan, L.M.; Kamat, P.V. Nanoscale Materials; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–3. [Google Scholar]
- Landau, L.; Lifshitz, E. Electrodynamics of Condensed Matter; Nauka: Moscow, Russia, 1982. [Google Scholar]
- Rao, C.; Dubeck, L.; Rothwarf, F. Superconducting energy gaps from magnetization measurements: Pb-In system. Phys. Rev. B
**1973**, 7, 1866. [Google Scholar] [CrossRef]

**Figure 1.**

**Hierarchical 3D nanostructured Pb–In sample growth.**(

**a**) Schematic illustration for the growth procedure for 3D nanostructured Pb–In samples and electrodeposition cell; (

**b**) Schematic view of the cathode membrane covered by Pd−In nanocrystals; (

**c**) The block-scheme of the experimental setup.

**Figure 2.**

**Summary of the growth samples with different concentration of Pb and In.**(

**a**) SEM images of the samples of Pb–In 65/35 alloy include: single chain, bulk chain links—crystallites and separate link, i.e., crystallite, consisting of nanocrystals; (

**b**) SEM images of the nanorods of Pb–In 85/15 alloy include a general view and single-nanorod view; (

**c**) SEM images of Pb–In–Pd 93/4/3 alloy include structure fragments, electron diffraction pattern (insert), and crystallite-containing nanocrystals.

**Figure 3.**A representative XRD pattern recorded for the micro-chains of Pb–In 65/35 alloy. The peaks corresponding to diffraction on different atomic planes are labeled with (hkl) indices.

**Figure 4.**

**Temperature dependence of magnetic susceptibility $\chi \left(T\right)={\chi}^{\prime}\left(T\right)+i{\chi}^{\u2033}\left(T\right)$ of different samples**. Dashed lines: ${\chi}^{\prime}\left(T\right)$, solid lines: ${\chi}^{\u2033}\left(T\right)$. (

**a**) $\chi \left(T\right)$ for samples without magnetic field: bulk Pb, Pb–In 65/35 sample shown in Figure 2a, Pb–In 85/15 and Pb–In−Pd 93/4/3 samples shown in Figure 2b,c. (

**b**) ${\chi}^{\prime}\left(T\right)$ for samples in the magnetic field of $H=150$ Oe: bulk Pb, Pb–In 65/35 sample shown in Figure 2a, Pb–In 85/15 and Pb–In−Pd 93/4/3 samples shown in Figure 2b,c. Only real part ${\chi}^{\prime}\left(t\right)$ is shown.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shevchun, A.F.; Strukova, G.K.; Shmyt’ko, I.M.; Strukov, G.V.; Vitkalov, S.A.; Yakovlev, D.S.; Nazhestkin, I.A.; Shovkun, D.V.
Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys. *Symmetry* **2022**, *14*, 2142.
https://doi.org/10.3390/sym14102142

**AMA Style**

Shevchun AF, Strukova GK, Shmyt’ko IM, Strukov GV, Vitkalov SA, Yakovlev DS, Nazhestkin IA, Shovkun DV.
Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys. *Symmetry*. 2022; 14(10):2142.
https://doi.org/10.3390/sym14102142

**Chicago/Turabian Style**

Shevchun, Artem F., Galina K. Strukova, Ivan M. Shmyt’ko, Gennady V. Strukov, Sergey A. Vitkalov, Dmitry S. Yakovlev, Ivan A. Nazhestkin, and Dmitry V. Shovkun.
2022. "Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys" *Symmetry* 14, no. 10: 2142.
https://doi.org/10.3390/sym14102142