A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem
Abstract
:1. Introduction
2. Ill-Posedness and Conditional Stability
3. Regularization Method and Error Estimates
3.1. Stability Estimate under an A Priori Regularization Parameter Choice Rule
3.2. Stability Estimate Based on an A Posteriori Parameter Selection Rule
- (1)
- The function is continuous;
- (2)
- for ;
- (3)
- for ;
- (4)
- The function is a strictly increasing function in the interval .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, J.V.; Blackwell, B.; Clair, S.R. Inverse Heat Conduction: Ill-Posed Problems; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Kluwer Academic: Boston, MA, USA, 1996. [Google Scholar]
- Tran, T.L. Surface temperature determination from borehole measurements: Regularization and error estimates. Int. J. Math. Math. Sci. 1995, 18, 601–606. [Google Scholar]
- Hadamard, J. Lectures on Cauchy Problems in Linear Partial Differential Equations; Yale University Press: New Haven, CT, USA, 1923. [Google Scholar]
- Eldén, L. Approximations for a Cauchy problem for the heat equation. Inverse Probl. 1987, 3, 263–273. [Google Scholar] [CrossRef]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Springer: New York, NY, USA, 1996. [Google Scholar]
- Tautenhahn, U. Optimality for ill-posed problems under general source conductions. Numer. Funct. Anal. Potim. 1998, 19, 377–398. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Xiong, X.T. On a radially symmetric inverse heat conduction problem. Appl. Math. Model. 2010, 34, 520–529. [Google Scholar] [CrossRef]
- Lesnic, D.; Elliott, L.; Ingham, D. Application of the boundary element method to inverse heat conduction problems. Int. J. Heat Mass Tran. 1996, 39, 1503–1517. [Google Scholar] [CrossRef]
- Shen, S.Y. A Numerical Study of Inverse Heat Conduction Problems. Comput. Math. Appl. 1999, 38, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Shivanian, E.; Khodabandehlo, H.R. Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng. J. 2016, 7, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Bergagio, M.; Li, H.P.; Anglart, H. An iterative finite-element algorithm for solving two-dimensional nonlinear inverse heat conduction problems. Int. J. Heat Mass Tran. 2018, 126, 281–292. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wu, B.; Chen, Q. Numerical reconstruction of a non-smooth heat flux in the inverse radial heat conduction problem. Appl. Math. Lett. 2021, 111, 106658. [Google Scholar] [CrossRef]
- Parzlivand, F.; Shahrezaee, A.M. A Meshless Method for the Numerical Solution of a Two-Dimension IHCP. Adv. Numer. Anal. 2014, 2014, 456143. [Google Scholar] [CrossRef]
- Carasso, A. Determining surface temperature from interior observations. SIAM J. Appl. Math. 1982, 42, 558–574. [Google Scholar] [CrossRef]
- Ngendahayo, J.P.; Niyobuhungiro, J.; Berntsson, F. Estimation of surface temperatures from interior measurements using Tikhonov regularization. Results Appl. Math. 2021, 9, 100140. [Google Scholar] [CrossRef]
- Murio, D.A. Stable numerical evaluation of Grnwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl. Sci. Eng. 2009, 17, 229–243. [Google Scholar] [CrossRef]
- Murio, D.A. The Mollification Method and the Numerical Solution of Ill-Posed Problem; John Wiley and Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Garshasbi, M.; Dastour, H. Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme. Numer. Algorithms 2015, 68, 769–790. [Google Scholar] [CrossRef]
- Eldén, L.; Berntsson, F.; Regińska, T. Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comp. 2000, 21, 2187–2205. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, A.; Frackowiak, A.; Cialkowski, M. Regularization of the inverse heat conduction problem by the discrete Fourier transform. Inverse Probl. Sci. Eng. 2016, 24, 195–212. [Google Scholar] [CrossRef]
- Fu, C.L. Simplified Tikhonov and Fourier regularization methods On a general sideways parabolic equation. J. Comput. Appl. Math. 2004, 167, 449–463. [Google Scholar] [CrossRef]
- Regińska, T.; Eldén, L. Stability and convergence of wavelet-Galerkin method for the sideways heat equation. J. Inverse Ill-Posed Probl. 2000, 8, 31–49. [Google Scholar] [CrossRef]
- Regińska, T.; Eldén, L. Solving the sideways heat equation by a wavelet-Galerkin method. Inverse Probl. 1997, 13, 1093–1106. [Google Scholar] [CrossRef]
- Hào, D.N. A non-characteristic Cauchy problem for linear parabolic equations, II: A variational method. Numer. Funct. Anal. Optim. 1992, 13, 541–564. [Google Scholar]
- Fu, C.L.; Qiu, C.Y. Wavelet and error estimation of surface heat flux. J.Comp. Appl. Math. 2003, 150, 143–155. [Google Scholar]
- Wang, J.R. The multi-resolution method applied to the sideways heat equation. J. Math. Anal. Appl. 2005, 309, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Regińska, T. Application of wavelet shrinkage to solving the sideways heat equation. BITNumerical Math. 2001, 41, 1101–1110. [Google Scholar]
- Cheng, W.; Zhang, Y.Q.; Fu, C.L. A wavelet regularization method for an inverse heat conduction problem with convection term. Electron. J. Differ. Eq. 2013, 2013, 1–9. [Google Scholar]
- Hon, Y.C.; Wei, T. The method of fundamental solutions for solving multidimensional inverse heat conduction problems. Comput. Model. Eng. Sci. 2005, 7, 119–132. [Google Scholar]
- Sun, Y.; He, S.N. A meshless method based on the method of fundamental solution for three-dimensional inverse heat conduction problems. Int. J. Heat Mass Tran. 2017, 108, 945–960. [Google Scholar] [CrossRef]
- Liu, J.C.; Wei, T. A quasi-reversibility regularization method for an inverse heat conduction problem without initial data. Appl. Math. Comput. 2013, 219, 10866–10881. [Google Scholar] [CrossRef]
- Lattès, R.; Lions, J.L. The Method of Quasi-Reversibility Method. In Applications to Partial Differential Equations; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Nguyen, H.T.; Khoa, V.A.; Vo, V.A. Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 2019, 51, 60–85. [Google Scholar] [CrossRef] [Green Version]
- Johansson, B.T.; Lesnic, D.; Reeve, T. A method of fundamental solutions for the radially symmetric inverse heat conduction problem. Int. Commun. Heat Mass 2012, 39, 887–895. [Google Scholar] [CrossRef]
- Cheng, W.; Fu, C.L. Two regularization methods for an axisymmetric inverse heat conduction problem. J. Inverse Ill-Posed Probl. 2009, 17, 157–170. [Google Scholar] [CrossRef]
- Wei, T.; Wang, J.G. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 2014, 78, 95–111. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Li, X.X. A quasi-boundary value regularization method for identifying an unknown source in the Poisson equation. J. Inequal. Appl. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Zhao, Q. A modified quasi-boundary value method for a two-dimensional inverse heat conduction problem. Comput. Math. Appl. 2020, 79, 293–302. [Google Scholar] [CrossRef]
- Hào, D.N.; Duc, N.V.; Lesnic, D. A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 2009, 25, 055002. [Google Scholar]
- Feng, X.L.; Eldén, L. Solving a Cauchy problem for a 3D elliptic PDE with variable coef-ficients by a quasi-boundary-value method. Inverse Probl. 2014, 30, 015005. [Google Scholar] [CrossRef]
- Zhang, H.W. Modified quasi-boundary value method for Cauchy problems of elliptic equations with vaeiable coefficients. Electron. J. Differ. Eq. 2011, 2011, 106. [Google Scholar]
- Yang, F.; Sun, Y.R.; Li, X.X.; Huang, C.Y. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer. Algorithms 2019, 82, 623–639. [Google Scholar] [CrossRef]
- Showalter, R.E. The final value problem for evolution equations. J. Math. Anal. Appl. 1974, 47, 563–572. [Google Scholar] [CrossRef]
- Cheng, W.; Fu, C.L.; Qian, Z. A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem. Math. Comput. Simul. 2007, 75, 97–112. [Google Scholar] [CrossRef]
- Morozov, V.A. On the solution of functional equations by the method of regularization. Dokl. Math. 1966, 7, 414–417. [Google Scholar]
- Scherzer, O. The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing 1993, 51, 45–60. [Google Scholar] [CrossRef]
- Feng, X.L.; Fu, C.L.; Cheng, H. A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model. 2011, 35, 3301–3315. [Google Scholar] [CrossRef]
- Liu, S.S.; Feng, L.X. A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem. J. Comput. Appl. Math. 2019, 353, 355–366. [Google Scholar] [CrossRef]
- Cheng, H.; Fu, C.L.; Zheng, G.H.; Gao, J. A regularization for a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. Sci. Eng. 2014, 22, 860–872. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Liu, Y.-L.; Yang, F. A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem. Symmetry 2022, 14, 2102. https://doi.org/10.3390/sym14102102
Cheng W, Liu Y-L, Yang F. A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem. Symmetry. 2022; 14(10):2102. https://doi.org/10.3390/sym14102102
Chicago/Turabian StyleCheng, Wei, Yi-Liang Liu, and Fan Yang. 2022. "A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem" Symmetry 14, no. 10: 2102. https://doi.org/10.3390/sym14102102