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Abstract: The three-dimensional Klein–Gordon oscillator exhibits an algebraic structure known
from supersymmetric quantum mechanics. The supersymmetry is unbroken with a vanishing Witten
index, and it is utilized to derive the spectral properties of the Klein–Gordon oscillator, which is
closely related to that of the nonrelativistic harmonic oscillator in three dimensions. Supersymmetry
also enables us to derive a closed-form expression for the energy-dependent Green’s function.
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1. Introduction

Starting with Galileo’s pendulum experiment [1] in 1602, and with Hook’s law of
elasticity [2] from 1678, harmonic oscillators played significant roles in classical physics.
More importantly, the harmonic oscillator was the first system to which early quantum
theory was successfully applied by Planck [3] in 1900 when developing his law of black
body radiation. Nowadays, the harmonic oscillator is a standard part of any introduc-
tory text book on nonrelativistic quantum mechanics. In relativistic quantum mechanics,
the harmonic oscillator was initially studied within Dirac’s theory of electrons in the
1960s [4–6], but attracted considerable attention only with the seminal work by Moshinsky
and Szczepaniak [7] (see also Quesne and Moshinsky [8]). Inspired by this so-called Dirac
oscillator, the Klein–Gordon oscillator (KGO) was studied by various authors [9–11].

The KGO Hamiltonian characterises a relativistic spin-zero particle with mass m
minimally coupled to a complex linear vector potential. Since its introduction, the KGO
has attracted much interest. The spectral properties of the one-dimensional system were
discussed, for example, in [12,13]. For a treatment in noncommutative space, see [14,15];
for recent results in a nontrivial topology, see [16–19] and the references therein.

Since 1990, the Dirac oscillator has been known to exhibit a supersymmetric (SUSY)
structure that, in turn, allows for explicit solutions [20–23]. More recently, SUSY also
enabled us to formulate Feynman’s path integral approach for Dirac systems [24]. SUSY in
the current context is not based on the original idea, which transforms between states with
different internal spin-degree of freedom, but refers to what is commonly known nowadays
as supersymmetric quantum mechanics; see, for example, [25] and the references therein.

The purpose of the present work is twofold. First, we show that the Klein–Gordon
oscillator possesses a hidden SUSY in the aforementioned sense. Second, we derive an
explicit expression for the Green function of the KGO. In doing so, we closely follow the
generic approach for SUSY in relativistic Hamiltonians with fixed but arbitrary spin [26].

In the next section, we set up the stage with a brief discussion on the KGO Hamiltonian
in three space dimensions and show that this Hamiltonian exhibits a SUSY structure by
mapping it onto a quantum mechanical SUSY system. This is then utilized to derive explicit
results of the system. In Section 3, we derive the eigenvalues and associated eigenstates. In
Section 4, we derive the corresponding Green’s function in a closed form. Lastly, Section 5
closes with a summary and some comments.
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2. Supersymmetry

The Hamiltonian form of the Klein–Gordon equation with arbitrary vector potential
was originally introduced by Feshbach and Villars [27], from which the KGO Hamiltonian
may be constructed via minimal coupling ~p → ~π := ~p − imω~r, where m > 0 stands
for the mass of the spinless Klein–Gordon particle, and ω > 0 is a coupling constant to
be identified with the harmonic oscillator frequency. This minimal coupling might be
interpreted as a complex-valued vector potential of form ~A(~r) := i(mcω/q)~r, with q being
the particle charge, and c the speed of light. However, such a vector potential is not linked
to any kind of gauge invariance, as ~A(~r) = i(mcω/2q)~∇r2 cannot be gauged away by a
pure phase factor in the wave function due to the presence of the imaginary unit.

First explicit expressions of the KGO Hamiltonian were presented by Debergh et al. [9]
for an isotropic system. The KGO Hamiltonian for a more general anisotropic oscillator
system is due to Bruce and Minning [10]. For the sake of simplicity, we consider the
isotropic system characterised by Hamiltonian

H :=
~π† · ~π

2m
⊗ (τ3 + iτ2) + mc2 ⊗ τ3 (1)

acting on Hilbert space L2(R3)⊗C2. In the above, τis stand for Pauli matrices

τ1 :=
(

0 1
1 0

)
, iτ2 :=

(
0 1
−1 0

)
, τ3 :=

(
1 0
0 −1

)
. (2)

These Pauli matrices do not represent a spin degree of freedom. The 2-spinors
on which the above Hamiltonian acts are those originally introduced by Feshbach and
Villars [27].

The KGO Hamiltonian (1) is pseudo-Hermitian [28,29], that is, H† = τ3H τ3, and
reads in an explicit 2× 2 matrix notation

H =

(
M A
−A −M

)
, (3)

where we set M := HNR + mc2 and A := HNR, both in essence being represented by the
nonrelativistic harmonic oscillator Hamiltonian in three dimensions

HNR :=
~π† · ~π

2m
=

1
2m

~p 2 +
m
2

ω2~r 2 − 3
2

h̄ω . (4)

Here and in the following, we use calligraphic symbols for operators acting on the full
Hilbert space L2(R3)⊗C2, and operators represented in italics act on subspace L2(R3).

Obviously, diagonal and off-diagonal elements in (3) commute, i.e., [M, A] = 0.
Hence, following the general approach of [26], an N = 2 SUSY structure can be established
as follows.

HSUSY :=
1

2mc2

(
M2 −H2

)
=

1
2mc2 H2

NR ⊗ 1 ,

Q :=
1√

2mc2

(
0 A
0 0

)
, W :=

(
1 0
0 −1

)
≡ τ3 ,

(5)

where we setM := M⊗ 1. The above SUSY operators obey SUSY algebra

HSUSY = {Q,Q†} , Q2 = 0 = Q†2 ,

[W ,HSUSY] = 0 , {Q,W} = 0 = {Q†,W} .
(6)

In the current context, the third Pauli matrix plays the role of the Witten party operator
W . Therefore, the upper and lower components of a general 2-spinor belong to the
subspace with positive and negative Witten parity, respectively. We further remark that
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dim kerQ = dim kerQ† = dim ker HNR = 1. That is, SUSY is unbroken, as HSUSY has
zero-energy eigenstates [25], but Witten index ∆ still vanishes as

∆ := indQ = dim kerQ− dim kerQ† = 0 . (7)

To the best of our knowledge, this is the first quantum mechanical system with an
unbroken N = 2 SUSY but vanishing Witten index, implying that the spectrum of H is
fully symmetric with respect to the origin, as we see in the following section.

3. Spectral Properties

As was recently shown [26], SUSY in a relativistic Hamiltonian implies the existence of
a Foldy–Wouthuysen transformation, which brings that Hamiltonian into a block-diagonal
form. In the case of the KGO, this transformation operator U , which is a pseudounitary
operator in the sense that U−1 = τ3 U †τ3, reads

U :=
|H|+ τ3H√

2(H2 +M|H|)
(8)

leading to block-diagonal Foldy–Wouthuysen Hamiltonian

HFW := U HU−1 = HFW ⊗ τ3 , HFW :=
√

2mc2HNR + m2c4 . (9)

To be more explicit, let us define tanh Θ := A/M = HNR/(HNR + mc2), which then
allows for us to write transformation (8) in matrix form [9]

U =

(
cosh Θ

2 sinh Θ
2

sinh Θ
2 cosh Θ

2

)
=

1√
2


√

M
HFW

+ 1
√

M
HFW
− 1√

M
HFW
− 1

√
M

HFW
+ 1

 . (10)

The above expressions are functions of operators of which all may be expressed in
terms of HNR. Hence, using the spectral theorem, these are well-defined. In fact, with
the spectral properties of the nonrelativistic harmonic-oscillator Hamiltonian (4), one
can directly obtain those of (1). Let ψn`µ denote the well-known eigenfunctions of HNR
corresponding to eigenvalue εn`; then, we have

HNR ψn`µ = εn` ψn`µ , εn` = h̄ω(2n + `) , n, ` ∈ N0 ,

ψn`µ(~r) =
(mω

h̄

)`/2+3/4
√

2 n!
Γ(n + `+ 3/2)

r` e−mωr2/h̄ L`+1/2
n

(mω

h̄
r2
)

Y`µ(~e) ,

µ ∈ {−`,−`+ 1, . . . , `− 1, `} , r := |~r| , ~e :=~r/r ,

(11)

where L`+1/2
n and Y`µ denote the associated Laguerre polynomials and spherical harmonics,

respectively. See, for example, ref. [30]. The eigenvalues and eigenfunctions of (1) are
explicitly given by

HΨ±n`µ = E±n`Ψ
±
n`µ , E±n` = ±mc2

√
1 +

2εn`
mc2 ,

Ψ+
n`µ(~r) = ψn`µ(~r)

(
cosh ϑn`

2

− sinh ϑn`
2

)
, Ψ−n`µ(~r) = ψn`µ(~r)

(
− sinh ϑn`

2

cosh ϑn`
2

)
,

(12)

where tanh ϑn` := εn`/(εn` + mc2). These states form an orthonormal basis in L2(R2)⊗C2

with respect to the scalar product [27].

〈Ψ1|Ψ2〉 :=
∫
R3

d3~r Ψ1(~r) τ3 Ψ2(~r) , (13)
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where the overbar stands for the transposed and complex conjugated 2-spinor. That is,

〈Ψ±n`µ|Ψ
±
n′`′µ′〉 = ±δnn′δ``′δµµ′ , 〈Ψ±n`µ|Ψ

∓
n′`′µ′〉 = 0 . (14)

Obviously, the scalar product (13), which was already introduced by Feshbach and
Villars [27], is not positive definite and might raise some questions on its probabilistic
interpretation. However, Mostafazadeh’s theory of pseudo-Hermitian operators provides
a solution for this obstacle. The Klein–Gordon case was explicitly discussed in [28,29].

The SUSY ground states associated with nonrelativistic eigenvalue ε00 = 0 are given by

Ψ+
000(~r) =

(mω

h̄π

)3/4
e−mωr2/h̄

(
1
0

)
, Ψ−000(~r) =

(mω

h̄π

)3/4
e−mωr2/h̄

(
0
1

)
(15)

with corresponding eigenvalues E±00 = ±mc2. The Foldy–Wouthuysen Hamiltonian (9) can
be written as

HFW = mc2

√
1 +

2HNR

mc2 ⊗ τ3 , (16)

a form already observed for other relativistic Hamiltonians exhibiting a SUSY [26].

4. Green’s Function

The SUSY established for the KGO in the previous section also allows for us to study
Green’s function associated with the KGO Hamiltonian (1). Following the general approach
of [26], Green’s function, defined by

G(z) :=
1
H− z

, z ∈ C\specH , (17)

can be expressed in terms of iterated Green’s function GI, that is,

G(z) = (H+ z)GI(z2) , GI(z2) :=
1

H2 − z2 . (18)

Noting that H2 = 2mc2(HNR + mc2/2) ⊗ 1, the iterated Green’s function can be
written in terms of nonrelativistic Green’s function GNR(ε) := (HNR− ε)−1 associated with
HNR, as follows.

GI(z2) =
1

2mc2 GNR(ε)⊗ 1 , ε :=
z2

2mc2 −
mc2

2
= 2mc2

(( z
2mc2

)2
− 1

4

)
. (19)

Inserting this into above relation (18) results in

G(z) = 1
2mc2

(
(HNR + mc2 + z) GNR(ε) HNR GNR(ε)

−HNR GNR(ε) −(HNR + mc2 − z) GNR(ε)

)
. (20)

Using defining relation HNR GNR(ε) = ε GNR(ε) with the second relation in (19) leads
us to closed-form expression

G(z) = GNR(ε)


(

1
2 + z

2mc2

)(
1
2 + z

2mc2

) (
1
2 + z

2mc2

)(
z

2mc2 − 1
2

)
(

1
2 + z

2mc2

)(
1
2 −

z
2mc2

) (
1
2 −

z
2mc2

)(
z

2mc2 − 1
2

)
 , (21)

with ε as defined in (19). The reader is invited to verify that HG(z) = z G(z). With
definition tanh ϑ := ε/(ε + mc2), the above result may be placed into form

G(z) = GNR(ε)

cosh ϑ
2 − sinh ϑ

2

(
cosh2 ϑ

2 cosh ϑ
2 sinh ϑ

2

− cosh ϑ
2 sinh ϑ

2 − sinh2 ϑ
2

)
. (22)
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The coordinate representation of GNR(~r,~r ′, ε) := 〈~r|GNR(ε)|~r ′〉 has been known for
long (see, for example [31]) and explicitly reads

GNR(~r,~r ′, ε) =
1

rr′
∞

∑
`=0

G`(r, r′, ε)
`

∑
µ=−`

Y∗`µ(~e
′)Y`µ(~e) ,

G`(r, r′, ε) = −
Γ
(
`
2 −

ε
2h̄ω

)
√

rr′ h̄ω
Wλ,ν

(
r2
>mω/h̄

)
Mλ,ν

(
r2
<mω/h̄

)
,

(23)

where Wλ,ν and Mλ,ν denote Whittaker’s functions, and we set λ := ε
2h̄ω + 3

4 , ν := `
2 + 1

4 ,
r> := max{r, r′} and r> := min{r, r′}.

5. Summary and Outlook

In this work, we showed that the KGO exhibits a SUSY structure, closely following
the general approach of [26]. The SUSY of the KGO was found to be unbroken but with a
vanishing Witten index. Despite eigenvalues in (12) having been known for a long time
(see, for example, [9,10]), the associated eigenstates in (12) have, to our knowledge, never
been presented. In [10] only the eigenstates ofHFW were given. In addition, SUSY enabled
us to calculate the KGO Green function in a closed form.

Obviously, the current discussion for an isotropic oscillator may be extended to that
for the anisotropic oscillator following Bruce and Manning [10]. Here, in essence, one
needs to reduce the problem to three one-dimensional harmonic oscillators. An explicit
expression for Green’s function may also be obtained, as the one-dimensional harmonic
oscillator Green’s function is also known in closed form. See, for example, Glasser and
Nieto [32], and the discussion of the associated Dirac problem [33]. One may also pursue
the path integral approach for the KGO along the lines of the corresponding approach
for the Dirac oscillator [24]. Another route for further investigation would be to look at
generalised nonharmonic oscillators characterized by a potential function Ua(r) := λara

using minimal substitution ~π := ~p− i(~∇Ua)(r). Such power-law potentials obey duality
symmetry in classical and nonrelativistic quantum mechanics (see recent work [34] and
references therein). In particular, a harmonic potential where a = 2, which corresponds to
the discussed KGO case, is dual to the Kepler potential where a = −1.

Another extension is to apply the current SUSY construction to the relativistic S = 1
oscillator. However, as was argued by Debergh et al. [9], the diagonal and off-diagonal
matrix elements of the associated Hamiltonian no longer commute. Hence, it may not be
possible to establish a SUSY structure.

Funding: This research received no external funding.
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