# A New Quantile Regression for Modeling Bounded Data under a Unit Birnbaum–Saunders Distribution with Applications in Medicine and Politics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Unit Birnbaum–Saunders Distribution

## 3. The UBS Quantile Regression Model

- (i)
- [Logit] $g\left({\mu}_{i}\right)=log\left[{\mu}_{i}/(1-{\mu}_{i})\right]$;
- (ii)
- [Probit] $g\left({\mu}_{i}\right)={\Phi}^{-1}\left({\mu}_{i}\right)$;
- (iii)
- [Complementary log-log] $g\left({\mu}_{i}\right)=log\left[-log(1-{\mu}_{i})\right]$;
- (iv)
- [Log-log] $g\left({\mu}_{i}\right)=log[-log\left({\mu}_{i}\right)]$; and
- (v)
- [Cauchit] $g\left({\mu}_{i}\right)=tan\left[\pi (\mu -0.5)\right]$;

`R`software named

`unitBSQuantReg`by means of its function

`unitBSQuantReg(formula, tau, data, link,…)`. For model checking, the function

`hnp(object, nsim = 99, halfnormal = TRUE, plot = TRUE, level = 0.95,`

`resid.type = c(“cox-snell”, “quantile”))`is available, which provides half-normal probability plots with simulated envelopes. A version of the

`unitBSQuantReg`package is available at https://github.com/AndrMenezes/unitBSQuantReg (accessed on 9 April 2021).

## 4. A Monte Carlo Simulation Study

- (i)
- $\mathrm{logit}\left({\mu}_{i}\right)={\delta}_{0}+{\delta}_{1}{z}_{i1}$ for ${\delta}_{0}=1.0$, ${\delta}_{1}=2.0$, with ${z}_{i1}\sim \mathrm{N}(0,1)$; and
- (ii)
- $\mathrm{logit}\left({\mu}_{i}\right)={\delta}_{0}+{\delta}_{1}{z}_{i1}+{\delta}_{2}{z}_{i2}$ for ${\delta}_{0}=1.0$, ${\delta}_{1}=1.0$, ${\delta}_{2}=2.0$, ${z}_{i1}\sim \mathrm{N}(0,1)$, with ${z}_{i2}\sim \mathrm{N}(0,1)$.

`SAS Data-Step`, while parameter estimates were obtained by the quasi-Newton method in

`SAS PROC NLMIXED`. The values of the response variable, given n, $\tau $, $\alpha $ and the covariate(s), are generated from the quantile function stated as

- (i)
- Bias$\left(\widehat{\varrho}\right)=(1/B){\sum}_{i=1}^{B}({\widehat{\varrho}}_{i}-\varrho )$;
- (ii)
- RMSE$\left({\widehat{\varrho}}_{i}\right)={\left[(1/B){\sum}_{i=1}^{B}{({\widehat{\varrho}}_{i}-\varrho )}^{2}\right]}^{1/2}$; and
- (iii)
- CP${}_{95\%}\left({\widehat{\varrho}}_{i}\right)=(1/B){\sum}_{i=1}^{B}I[{\widehat{\varrho}}_{i}\pm 1.96\mathrm{SE}\left({\widehat{\varrho}}_{i}\right)]$, where $\varrho =\alpha ,{\delta}_{0},{\delta}_{1}$, or ${\delta}_{2}$, I is the indicator function, and $\mathrm{SE}\left({\widehat{\varrho}}_{i}\right)$ is the corresponding estimated SE.

## 5. Empirical Application with Data from Political Sciences

`baquantreg`[53] from

`R`and was considered the human development index (HDI) in 2010 as covariate. We call this set “vote data” and assume the regression structure for ${\mu}_{i}$ formulated as $\mathrm{logit}\left({\mu}_{i}\right)={\delta}_{0}+{\delta}_{1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{HDI}}_{i}$, for $i=1,\dots ,74$.

`unitBSQuantReg`package using the instructions:

```
install.packages(‘‘remotes’’)
remotes::install_github(‘‘AndrMenezes/unitBSQuantReg’’)
library(unitBSQuantReg)
data(BrazilElection2014, package = ‘‘baquantreg’’)
ind <- which(BrazilElection2014$UF_name == ‘‘SE’’)
data.se <- BrazilElection2014[ind, c(‘‘percVotes", ‘‘HDI’’)]
taus <- c(0.10, 0.25, 0.50, 0.75, 0.90)
fits <- lapply(taus, function(TAU)
unitBSQuantReg(percVotes ~ HDI, data = data.se, tau = TAU))
lapply(fits, coef)
```

`unitquantreg`package, which is under development.

## 6. Empirical Application with Data from Sports Medicine

## 7. Conclusions, Limitations and Future Investigation

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Other Distributions for Quantile Regression

## References

- Mazucheli, J.; Menezes, A.F.B.; Dey, S. The unit Birnbaum-Saunders distribution with applications. Chil. J. Stat.
**2018**, 9, 47–57. [Google Scholar] - Mousa, A.M.; El-Sheikh, A.A.; Abdel-Fattah, M.A. A gamma regression for bounded continuous variables. Adv. Appl. Stat.
**2016**, 49, 305–326. [Google Scholar] [CrossRef] - Mazucheli, J.; Menezes, A.F.; Dey, S. Unit-Gompertz distribution with applications. Statistica
**2019**, 79, 25–43. [Google Scholar] - Ghitany, M.E.; Mazucheli, J.; Menezes, A.; Alqallaf, F. The unit inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval. Commun. Stat. Theory Methods
**2019**, 48, 3423–3438. [Google Scholar] [CrossRef] - Mazucheli, J.; Menezes, A.F.B.; Chakraborty, S. On the one parameter unit Lindley distribution and its associated regression model for proportion data. J. Appl. Stat.
**2019**, 46, 700–714. [Google Scholar] [CrossRef] [Green Version] - Mazucheli, J.; Bapat, S.R.; Menezes, A.F.B. A new one-parameter unit Lindley distribution. Chil. J. Stat.
**2019**, 11, 53–67. [Google Scholar] - Mazucheli, J.; Menezes, A.F.B.; Ghitany, M.E. The unit Weibull distribution and associated inference. J. Appl. Probab. Stat.
**2018**, 13, 1–22. [Google Scholar] - Mazucheli, J.; Menezes, A.F.B.; Fernandes, L.B.; de Oliveira, R.P.; Ghitany, M.E. The unit Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. J. Appl. Stat.
**2020**, 47, 954–974. [Google Scholar] [CrossRef] - Menezes, A.F.B.; Mazucheli, J.; Bourguignon, M. A parametric quantile regression approach for modelling zero-or-one inflated double bounded data. Biometr. J.
**2021**, 63, 841–858. [Google Scholar] [CrossRef] [PubMed] - Figueroa-Zuniga, J.I.; Niklitschek, S.; Leiva, V.; Liu, S. Modeling heavy-tailed bounded data by the trapezoidal beta distribution with applications. Revstat
**2021**, in press. [Google Scholar] - Kieschnick, R.; McCullough, B.D. Regression analysis of variates observed on (0, 1): Percentages, proportions and fractions. Stat. Model.
**2003**, 3, 193–213. [Google Scholar] [CrossRef] [Green Version] - Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods
**2006**, 11, 54–71. [Google Scholar] [CrossRef] [Green Version] - Altun, E.; El-Morshedy, M.; Eliwa, M.S. A new regression model for bounded response variable: An alternative to the beta and unit Lindley regression models. PLoS ONE
**2021**, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] - Jodrá, P. A bounded distribution derived from the shifted Gompertz law. J. King Saud Univ. Sci.
**2020**, 32, 523–536. [Google Scholar] [CrossRef] - Ferrari, S.; Cribari Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat.
**2004**, 31, 799–815. [Google Scholar] [CrossRef] - Bayes, C.L.; Bazán, J.L.; García, C. A new robust regression model for proportions. Bayesian Anal.
**2012**, 7, 841–866. [Google Scholar] [CrossRef] - Gómez-Déniz, E.; Sordo, M.A.; Calderín-Ojeda, E. The log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insur. Math. Econ.
**2014**, 54, 49–57. [Google Scholar] [CrossRef] - Altun, E. The log-weighted exponential regression model: Alternative to the beta regression model. Commun. Stat. Theory Methods
**2019**, 1–16. [Google Scholar] [CrossRef] - Bonat, W.H.; Petterle, R.R.; Hinde, J.; Demétrio, C.G.B. Flexible quasi-beta regression models for continuous bounded data. Stat. Model.
**2019**, 19, 617–633. [Google Scholar] [CrossRef] - Song, P.X.K.; Tan, M. Marginal models for longitudinal continuous proportional data. Biometrics
**2000**, 56, 496–502. [Google Scholar] [CrossRef] - Altun, E.; Cordeiro, G.M. The unit improved second-degree Lindley distribution: Inference and regression modeling. Comput. Stat.
**2020**, 35, 259–279. [Google Scholar] [CrossRef] - Zhou, H.; Huang, X.; For the Alzheimer’s Disease Neuroimaging Initiative. Parametric mode regression for bounded responses. Biometr. J.
**2020**, 62, 1791–1809. [Google Scholar] [CrossRef] [PubMed] - Menezes, A.F.B.; Mazucheli, J.; Chakraborty, S. A collection of parametric modal regression models for bounded data. J. Biopharm. Stat.
**2021**, accepted. [Google Scholar] - Chahuan-Jimenez, K.; Rubilar, R.; de la Fuente-Mella, H.; Leiva, V. Breakpoint analysis for the COVID-19 pandemic and its effect on the stock markets. Entropy
**2021**, 32, 100. [Google Scholar] [CrossRef] [PubMed] - Korkmaz, M.Ç.; Chesneau, C.; Korkmaz, Z.S. On the arcsecant hyperbolic normal distribution. Properties, quantile regression modeling and applications. Symmetry
**2021**, 13, 117. [Google Scholar] [CrossRef] - Lemonte, A.J.; Moreno-Arenas, G. On a heavy-tailed parametric quantile regression model for limited range response variables. Comput. Stat.
**2020**, 35, 379–398. [Google Scholar] [CrossRef] - Mitnik, P.A.; Baek, S. The Kumaraswamy distribution: Median-dispersion re-parameterizations for regression modeling and simulation-based estimation. Stat. Pap.
**2013**, 54, 177–192. [Google Scholar] [CrossRef] - Jodrá, P.; Jiménez-Gamero, M.D. A quantile regression model for bounded responses based on the exponential-geometric distribution. Revstat
**2020**, 4, 415–436. [Google Scholar] - Paz, R.F.; Balakrishnan, N.; Bazán, J.L. L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications. Braz. J. Prob. Stat.
**2019**, 33, 455–479. [Google Scholar] - Cancho, V.G.; Bazán, J.L.; Dey, D.K. A new class of regression for a bounded response with application in the incidence rate of colorectal cancer. Stat. Methods Med. Res.
**2020**, 29, 2015–2033. [Google Scholar] [CrossRef] - Korkmaz, M.Ç.; Emrah, A.; Chesneau, C.; Yousof, H.M. On the unit Chen distribution with associated quantile regression and applications. Int. J. Environ. Res. Public Health
**2019**, 16, 2748. [Google Scholar] - Bakouch, H.S.; Nik, A.S.; Asgharzadeh, A.; Salinas, H.S. A flexible probability model for proportion data: Unit-half-normal distribution. Commun. Stat. Case Stud. Data Anal. Appl.
**2021**, in press. [Google Scholar] [CrossRef] - Korkmaz, M.Ç.; Chesneau, C. On the unit Burr-XII distribution with the quantile regression modeling and applications. Comput. Appl. Math.
**2021**, 40, 1–29. [Google Scholar] [CrossRef] - Koenker, R.; Basset, G. Regression Quantiles. Econometrica
**1978**, 46, 33–50. [Google Scholar] [CrossRef] - Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Prob.
**1969**, 6, 319–327. [Google Scholar] [CrossRef] - Balakrishnan, N.; Gupta, R.C.; Kundu, D.; Leiva, V.; Sanhueza, A. On some mixture models based on the Birnbaum-Saunders distribution and associated inference. J. Stat. Plan. Inference
**2011**, 141, 2175–2190. [Google Scholar] [CrossRef] - Patriota, A.G. On scale mixture Birnbaum-Saunders distributions. J. Stat. Plan. Inference
**2012**, 142, 2221–2226. [Google Scholar] [CrossRef] - Lemonte, A.J. A note on the Fisher information matrix of the Birnbaum-Saunders distribution. J. Stat. Theory Appl.
**2016**, 15, 196–205. [Google Scholar] - Kundu, D.; Kannan, N.; Balakrishnan, N. On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal.
**2008**, 52, 2692–2702. [Google Scholar] [CrossRef] [Green Version] - Rieck, J.R.; Nedelman, J.R. A log-linear model for the Birnbaum-Saunders distribution. Technometrics
**1991**, 33, 51–60. [Google Scholar] - Lemonte, A.J. A log-Birnbaum-Saunders regression model with asymmetric errors. J. Stat. Comput. Simul.
**2012**, 82, 1775–1787. [Google Scholar] [CrossRef] [Green Version] - Sánchez, L.; Leiva, V.; Galea, M.; Saulo, H. Birnbaum-Saunders quantile regression and its diagnostics with application to economic data. Appl. Stochastic Models Bus. Ind.
**2021**, 37, 53–73. [Google Scholar] [CrossRef] - Leiva, V.; Sanchez, L.; Galea, M.; Saulo, H. Global and local diagnostic analytics for a geostatistical model based on a new approach to quantile regression. Stoch. Environ. Res. Risk Assess.
**2020**, 34, 1457–1471. [Google Scholar] [CrossRef] - Sánchez, L.; Leiva, V.; Galea, M.; Saulo, H. Birnbaum–Saunders quantile regression models with application to spatial data. Mathematics
**2021**, 8, 1000. [Google Scholar] [CrossRef] - Saulo, H.; Dasilva, A.; Leiva, V.; Sanchez, L.; de la Fuente-Mella, H. Log-symmetric quantile regression models. Stat. Neerlandica
**2021**, in press. [Google Scholar] [CrossRef] - Koenker, R.; Machado, J.A.F. Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc.
**1999**, 94, 1296–1310. [Google Scholar] [CrossRef] - Bayes, C.L.; Bazán, J.L.; Castro, M. A quantile parametric mixed regression model for bounded response variables. Stat. Interface
**2017**, 10, 483–493. [Google Scholar] [CrossRef] - Rodrigues, J.; Bazán, J.L.; Suzuki, A.K. A flexible procedure for formulating probability distributions on the unit interval with applications. Commun. Stat. Theory Methods
**2020**, 49, 738–754. [Google Scholar] [CrossRef] - Smithson, M.; Shou, Y. CDF-quantile distributions for modelling random variables on the unit interval. Br. J. Math. Stat. Psychol.
**2017**, 70, 412–438. [Google Scholar] [CrossRef] - Noufaily, A.; Jones, M.C. Parametric quantile regression based on the generalized gamma distribution. J. R. Stat. C
**2013**, 62, 723–740. [Google Scholar] [CrossRef] - Gallardo, D.I.; Gómez-Déniz, E.; Gómez, H.W. Discrete generalized half normal distribution with applications in quantile regression. SORT
**2020**, 44, 265–284. [Google Scholar] - Lindsay, B.G.; Li, B. On second-order optimality of the observed Fisher information. Ann. Stat.
**1997**, 25, 2172–2199. [Google Scholar] [CrossRef] - Santos, B. Baquantreg: Bayesian Quantile Regression Methods. R Package Version 0.1. 2015. Available online: https://rdrr.io/github/brsantos/baquantreg/ (accessed on 9 April 2021).
- Petterle, R.R.; Bonat, W.H.; Scarpin, C.T.; Jonasson, T.; Borba, V.Z.C. Multivariate quasi–beta regression models for continuous bounded data. Int. J. Biostat.
**2020**, 1, 1–15. [Google Scholar] [CrossRef] - Benedetti, T.R.B.; Antunes, P.C.; Rodriguez–Añez, C.R.; Mazo, G.Z.; Petroski, E.L. Reproducibility and validity of the International Physical Activity Questionnaire (IPAQ) in elderly men. Rev. Bras. Med. Esporte
**2007**, 13, 11–16. [Google Scholar] [CrossRef] - Santos-Neto, M.; Cysneiros, F.J.A.; Leiva, V.; Barros, M. Reparameterized Birnbaum–Saunders regression models with varying precision. Electronic J. Stat.
**2016**, 10, 2825–2855. [Google Scholar] [CrossRef] - Ventura, M.; Saulo, H.; Leiva, V.; Monsueto, S. Log-symmetric regression models: Information criteria, application to movie business and industry data with economic implications. Appl. Stoch. Models Bus. Ind.
**2019**, 35, 963–977. [Google Scholar] [CrossRef] - Aykroyd, R.G.; Leiva, V.; Marchant, C. Multivariate Birnbaum–Saunders distributions: Modelling and applications. Risks
**2018**, 6, 21. [Google Scholar] [CrossRef] [Green Version] - Garcia-Papani, F.; Uribe-Opazo, M.A.; Leiva, V.; Aykroyd, R.G. Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stochastic Environ. Res. Risk Assess.
**2017**, 31, 105–124. [Google Scholar] [CrossRef] [Green Version] - Leiva, V.; Saulo, H.; Souza, R.; Aykroyd, R.G.; Vila, R. A new BISARMA time series model for forecasting mortality using weather and particulate matter data. J. Forecast.
**2021**, 40, 346–364. [Google Scholar] [CrossRef] - Giraldo, R.; Herrera, L.; Leiva, V. Cokriging prediction using as secondary variable a functional random field with application in environmental pollution. Mathematics
**2020**, 8, 1305. [Google Scholar] [CrossRef] - de la Fuente-Mella, H.; Rojas Fuentes, J.L.; Leiva, V. Econometric modeling of productivity and technical efficiency in the Chilean manufacturing industry. Comput. Ind. Eng.
**2020**, 139, 105793. [Google Scholar] [CrossRef] - Martinez-Florez, G.; Leiva, V.; Gomez-Deniz, E.; Marchant, C. A family of skew-normal distributions for modeling proportions and rates with zeros/ones excess. Symmetry
**2020**, 12, 1439. [Google Scholar] [CrossRef] - Leao, J.; Leiva, V.; Saulo, H.; Tomazella, V. A survival model with Birnbaum–Saunders frailty for uncensored and censored cancer data. Braz. J. Probab. Stat.
**2018**, 32, 707–729. [Google Scholar] [CrossRef] [Green Version] - Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol.
**1980**, 46, 79–88. [Google Scholar] [CrossRef]

**Figure 1.**PDFs of the unit UBS distribution for the indicated values of $\mu $, $\alpha $ and $\tau $.

**Figure 2.**Behaviors of the mean, variance, coefficient of skewness and coefficient of kurtosis for the indicated values of $\alpha $ and $\tau $ in function of $\mu $.

**Figure 3.**Quantile regression fit plot (

**left**) and estimated quantile process plots for ${\delta}_{0}$ (

**center left**), ${\delta}_{1}$ (

**center right**) and $\alpha $ (

**right**) with vote data.

**Figure 4.**Half-normal plots with envelopes of Cox–Snell (first row) and randomized quantile (second row) residuals for the indicated $\tau $ quantile level with vote data.

**Figure 5.**Estimated quantile process plot for the indicated ${\delta}_{j}$, with $j=0,1,\dots ,5$, and $\alpha $ (second row right) with arm data.

**Figure 6.**Half-normal plots with envelopes of Cox–Snell (first row) and randomized quantile (second row) residuals for the indicated $\tau $ quantile level with arm data.

**Table 1.**Empirical bias, RMSE and $95\%$ CP for the true values ${\delta}_{0}=1.0$, ${\delta}_{1}=2.0$ and $\alpha =0.5$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | ||||||
---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.050$ | $-0.007$ | $-0.034$ | $0.202$ | $0.174$ | $0.085$ | $0.887$ | $0.916$ | $0.853$ |

50 | $0.021$ | $-0.003$ | $-0.013$ | $0.123$ | $0.103$ | $0.051$ | $0.927$ | $0.938$ | $0.911$ | |

100 | $0.010$ | $-0.002$ | $-0.006$ | $0.087$ | $0.073$ | $0.036$ | $0.936$ | $0.940$ | $0.932$ | |

200 | $0.005$ | $-0.001$ | $-0.003$ | $0.061$ | $0.051$ | $0.025$ | $0.943$ | $0.944$ | $0.941$ | |

300 | $0.003$ | $-0.000$ | $-0.002$ | $0.050$ | $0.041$ | $0.020$ | $0.948$ | $0.947$ | $0.946$ | |

0.25 | 20 | $0.026$ | $-0.002$ | $-0.034$ | $0.168$ | $0.173$ | $0.086$ | $0.903$ | $0.918$ | $0.854$ |

50 | $0.011$ | $-0.002$ | $-0.013$ | $0.103$ | $0.102$ | $0.051$ | $0.935$ | $0.940$ | $0.911$ | |

100 | $0.005$ | $-0.001$ | $-0.006$ | $0.073$ | $0.072$ | $0.036$ | $0.940$ | $0.941$ | $0.931$ | |

200 | $0.003$ | $-0.000$ | $-0.003$ | $0.051$ | $0.050$ | $0.025$ | $0.944$ | $0.945$ | $0.940$ | |

300 | $0.002$ | $-0.000$ | $-0.002$ | $0.042$ | $0.041$ | $0.020$ | $0.950$ | $0.947$ | $0.946$ | |

0.50 | 20 | $-0.003$ | $0.004$ | $-0.034$ | $0.152$ | $0.172$ | $0.086$ | $0.918$ | $0.918$ | $0.856$ |

50 | $-0.000$ | $0.001$ | $-0.013$ | $0.094$ | $0.102$ | $0.051$ | $0.938$ | $0.941$ | $0.912$ | |

100 | $-0.000$ | $-0.000$ | $-0.006$ | $0.066$ | $0.072$ | $0.036$ | $0.944$ | $0.943$ | $0.932$ | |

200 | $0.000$ | $0.000$ | $-0.003$ | $0.047$ | $0.050$ | $0.025$ | $0.946$ | $0.946$ | $0.940$ | |

300 | $0.000$ | $0.000$ | $-0.002$ | $0.038$ | $0.040$ | $0.020$ | $0.949$ | $0.949$ | $0.947$ | |

0.75 | 20 | $-0.033$ | $0.011$ | $-0.034$ | $0.171$ | $0.174$ | $0.085$ | $0.914$ | $0.920$ | $0.855$ |

50 | $-0.012$ | $0.003$ | $-0.013$ | $0.104$ | $0.103$ | $0.051$ | $0.934$ | $0.944$ | $0.914$ | |

100 | $-0.006$ | $0.001$ | $-0.006$ | $0.073$ | $0.072$ | $0.036$ | $0.944$ | $0.942$ | $0.933$ | |

200 | $-0.003$ | $0.001$ | $-0.003$ | $0.052$ | $0.050$ | $0.025$ | $0.946$ | $0.946$ | $0.940$ | |

300 | $-0.002$ | $0.001$ | $-0.002$ | $0.042$ | $0.041$ | $0.020$ | $0.948$ | $0.949$ | $0.947$ | |

0.90 | 20 | $-0.058$ | $0.018$ | $-0.033$ | $0.207$ | $0.177$ | $0.085$ | $0.904$ | $0.920$ | $0.857$ |

50 | $-0.022$ | $0.006$ | $-0.013$ | $0.125$ | $0.104$ | $0.051$ | $0.930$ | $0.944$ | $0.915$ | |

100 | $-0.011$ | $0.002$ | $-0.006$ | $0.087$ | $0.073$ | $0.036$ | $0.941$ | $0.942$ | $0.935$ | |

200 | $-0.005$ | $0.002$ | $-0.003$ | $0.061$ | $0.051$ | $0.025$ | $0.947$ | $0.947$ | $0.939$ | |

300 | $-0.003$ | $0.001$ | $-0.002$ | $0.049$ | $0.041$ | $0.020$ | $0.950$ | $0.949$ | $0.945$ |

**Table 2.**Empirical bias, RMSE and $95\%$ CP for the true values ${\delta}_{0}=1.0$, ${\delta}_{1}=2.0$ and $\alpha =1.0$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | ||||||
---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.094$ | $-0.007$ | $-0.073$ | $0.367$ | $0.320$ | $0.173$ | $0.884$ | $0.918$ | $0.846$ |

50 | $0.038$ | $-0.005$ | $-0.029$ | $0.222$ | $0.189$ | $0.103$ | $0.925$ | $0.939$ | $0.908$ | |

100 | $0.018$ | $-0.003$ | $-0.014$ | $0.157$ | $0.133$ | $0.072$ | $0.936$ | $0.941$ | $0.930$ | |

200 | $0.009$ | $-0.001$ | $-0.007$ | $0.110$ | $0.092$ | $0.050$ | $0.944$ | $0.946$ | $0.939$ | |

300 | $0.006$ | $-0.000$ | $-0.004$ | $0.089$ | $0.075$ | $0.041$ | $0.948$ | $0.947$ | $0.945$ | |

0.25 | 20 | $0.050$ | $0.001$ | $-0.073$ | $0.312$ | $0.318$ | $0.173$ | $0.901$ | $0.918$ | $0.847$ |

50 | $0.021$ | $-0.002$ | $-0.029$ | $0.190$ | $0.188$ | $0.103$ | $0.934$ | $0.940$ | $0.908$ | |

100 | $0.010$ | $-0.002$ | $-0.014$ | $0.134$ | $0.131$ | $0.072$ | $0.938$ | $0.942$ | $0.930$ | |

200 | $0.005$ | $0.000$ | $-0.007$ | $0.095$ | $0.092$ | $0.050$ | $0.944$ | $0.946$ | $0.939$ | |

300 | $0.003$ | $0.000$ | $-0.004$ | $0.077$ | $0.074$ | $0.041$ | $0.949$ | $0.948$ | $0.945$ | |

0.50 | 20 | $-0.010$ | $0.013$ | $-0.073$ | $0.283$ | $0.320$ | $0.173$ | $0.916$ | $0.922$ | $0.847$ |

50 | $-0.003$ | $0.003$ | $-0.029$ | $0.172$ | $0.188$ | $0.103$ | $0.939$ | $0.942$ | $0.909$ | |

100 | $-0.001$ | $0.000$ | $-0.014$ | $0.121$ | $0.131$ | $0.072$ | $0.945$ | $0.944$ | $0.930$ | |

200 | $-0.000$ | $0.001$ | $-0.007$ | $0.085$ | $0.091$ | $0.050$ | $0.945$ | $0.946$ | $0.940$ | |

300 | $-0.000$ | $0.001$ | $-0.004$ | $0.069$ | $0.074$ | $0.041$ | $0.948$ | $0.948$ | $0.946$ | |

0.75 | 20 | $-0.074$ | $0.029$ | $-0.072$ | $0.325$ | $0.327$ | $0.173$ | $0.915$ | $0.923$ | $0.849$ |

50 | $-0.028$ | $0.009$ | $-0.029$ | $0.194$ | $0.190$ | $0.103$ | $0.936$ | $0.944$ | $0.910$ | |

100 | $-0.013$ | $0.003$ | $-0.014$ | $0.135$ | $0.132$ | $0.072$ | $0.945$ | $0.944$ | $0.931$ | |

200 | $-0.006$ | $0.002$ | $-0.007$ | $0.095$ | $0.092$ | $0.050$ | $0.946$ | $0.947$ | $0.939$ | |

300 | $-0.004$ | $0.002$ | $-0.004$ | $0.077$ | $0.074$ | $0.041$ | $0.950$ | $0.948$ | $0.946$ | |

0.90 | 20 | $-0.122$ | $0.043$ | $-0.071$ | $0.390$ | $0.335$ | $0.171$ | $0.908$ | $0.924$ | $0.850$ |

50 | $-0.047$ | $0.014$ | $-0.028$ | $0.228$ | $0.192$ | $0.102$ | $0.932$ | $0.946$ | $0.912$ | |

100 | $-0.023$ | $0.005$ | $-0.014$ | $0.158$ | $0.133$ | $0.071$ | $0.943$ | $0.944$ | $0.933$ | |

200 | $-0.010$ | $0.003$ | $-0.007$ | $0.111$ | $0.093$ | $0.050$ | $0.947$ | $0.947$ | $0.939$ | |

300 | $-0.007$ | $0.002$ | $-0.004$ | $0.089$ | $0.075$ | $0.040$ | $0.949$ | $0.950$ | $0.945$ |

**Table 3.**Empirical bias, RMSE and $95\%$ CP for the true values ${\delta}_{0}=1.0$, ${\delta}_{1}=2.0$ and $\alpha =2.0$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | ||||||
---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.152$ | $-0.004$ | $-0.162$ | $0.566$ | $0.511$ | $0.358$ | $0.887$ | $0.921$ | $0.831$ |

50 | $0.061$ | $-0.005$ | $-0.064$ | $0.333$ | $0.292$ | $0.209$ | $0.928$ | $0.941$ | $0.901$ | |

100 | $0.029$ | $-0.004$ | $-0.031$ | $0.233$ | $0.201$ | $0.145$ | $0.938$ | $0.941$ | $0.928$ | |

200 | $0.014$ | $-0.001$ | $-0.015$ | $0.163$ | $0.139$ | $0.101$ | $0.945$ | $0.947$ | $0.938$ | |

300 | $0.009$ | $0.000$ | $-0.009$ | $0.132$ | $0.112$ | $0.081$ | $0.950$ | $0.947$ | $0.944$ | |

0.25 | 20 | $0.095$ | $0.006$ | $-0.162$ | $0.502$ | $0.512$ | $0.358$ | $0.897$ | $0.922$ | $0.833$ |

50 | $0.039$ | $-0.002$ | $-0.064$ | $0.297$ | $0.291$ | $0.210$ | $0.930$ | $0.942$ | $0.901$ | |

100 | $0.019$ | $-0.002$ | $-0.031$ | $0.208$ | $0.200$ | $0.145$ | $0.941$ | $0.943$ | $0.928$ | |

200 | $0.010$ | $0.000$ | $-0.015$ | $0.146$ | $0.138$ | $0.101$ | $0.946$ | $0.947$ | $0.938$ | |

300 | $0.006$ | $0.001$ | $-0.009$ | $0.118$ | $0.111$ | $0.082$ | $0.948$ | $0.946$ | $0.944$ | |

0.50 | 20 | $-0.026$ | $0.032$ | $-0.160$ | $0.450$ | $0.522$ | $0.358$ | $0.917$ | $0.924$ | $0.832$ |

50 | $-0.008$ | $0.007$ | $-0.063$ | $0.262$ | $0.292$ | $0.210$ | $0.939$ | $0.943$ | $0.903$ | |

100 | $-0.004$ | $0.002$ | $-0.030$ | $0.181$ | $0.199$ | $0.145$ | $0.945$ | $0.944$ | $0.929$ | |

200 | $-0.001$ | $0.002$ | $-0.014$ | $0.127$ | $0.138$ | $0.101$ | $0.946$ | $0.946$ | $0.938$ | |

300 | $-0.001$ | $0.002$ | $-0.009$ | $0.102$ | $0.111$ | $0.082$ | $0.949$ | $0.948$ | $0.945$ | |

0.75 | 20 | $-0.157$ | $0.069$ | $-0.158$ | $0.558$ | $0.549$ | $0.356$ | $0.922$ | $0.928$ | $0.833$ |

50 | $-0.058$ | $0.020$ | $-0.062$ | $0.311$ | $0.299$ | $0.208$ | $0.941$ | $0.945$ | $0.905$ | |

100 | $-0.028$ | $0.008$ | $-0.030$ | $0.212$ | $0.202$ | $0.144$ | $0.947$ | $0.945$ | $0.929$ | |

200 | $-0.013$ | $0.005$ | $-0.014$ | $0.148$ | $0.139$ | $0.101$ | $0.946$ | $0.946$ | $0.938$ | |

300 | $-0.009$ | $0.004$ | $-0.009$ | $0.119$ | $0.111$ | $0.081$ | $0.949$ | $0.949$ | $0.946$ | |

0.90 | 20 | $-0.227$ | $0.087$ | $-0.160$ | $0.653$ | $0.569$ | $0.354$ | $0.918$ | $0.930$ | $0.833$ |

50 | $-0.083$ | $0.024$ | $-0.065$ | $0.353$ | $0.303$ | $0.208$ | $0.938$ | $0.947$ | $0.904$ | |

100 | $-0.040$ | $0.007$ | $-0.033$ | $0.238$ | $0.203$ | $0.144$ | $0.945$ | $0.946$ | $0.928$ | |

200 | $-0.020$ | $0.003$ | $-0.018$ | $0.166$ | $0.140$ | $0.101$ | $0.947$ | $0.946$ | $0.935$ | |

300 | $-0.014$ | $0.001$ | $-0.013$ | $0.133$ | $0.112$ | $0.081$ | $0.948$ | $0.950$ | $0.942$ |

**Table 4.**Empirical bias, RMSE and $95\%$ CP for the true values ${\delta}_{0}=1.0$, ${\delta}_{1}=1.0$, ${\delta}_{2}=2.0$ and $\alpha =0.5$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.066$ | $-0.006$ | $-0.010$ | $-0.046$ | $0.213$ | $0.160$ | $0.176$ | $0.091$ | $0.876$ | $0.916$ | $0.912$ | $0.813$ |

50 | $0.027$ | $-0.002$ | $-0.005$ | $-0.019$ | $0.128$ | $0.095$ | $0.103$ | $0.052$ | $0.920$ | $0.930$ | $0.938$ | $0.901$ | |

100 | $0.013$ | $-0.001$ | $-0.002$ | $-0.009$ | $0.090$ | $0.065$ | $0.073$ | $0.036$ | $0.933$ | $0.939$ | $0.941$ | $0.924$ | |

200 | $0.006$ | $-0.000$ | $-0.001$ | $-0.005$ | $0.063$ | $0.045$ | $0.051$ | $0.025$ | $0.939$ | $0.946$ | $0.945$ | $0.934$ | |

300 | $0.004$ | $-0.001$ | $-0.000$ | $-0.003$ | $0.052$ | $0.036$ | $0.041$ | $0.021$ | $0.941$ | $0.948$ | $0.945$ | $0.940$ | |

0.25 | 20 | $0.033$ | $-0.003$ | $-0.003$ | $-0.047$ | $0.176$ | $0.160$ | $0.175$ | $0.091$ | $0.898$ | $0.916$ | $0.915$ | $0.812$ |

50 | $0.014$ | $-0.001$ | $-0.002$ | $-0.019$ | $0.107$ | $0.095$ | $0.102$ | $0.053$ | $0.928$ | $0.930$ | $0.940$ | $0.899$ | |

100 | $0.007$ | $-0.000$ | $-0.001$ | $-0.009$ | $0.075$ | $0.065$ | $0.072$ | $0.037$ | $0.940$ | $0.939$ | $0.942$ | $0.924$ | |

200 | $0.003$ | $-0.000$ | $-0.000$ | $-0.005$ | $0.053$ | $0.045$ | $0.050$ | $0.026$ | $0.941$ | $0.946$ | $0.946$ | $0.934$ | |

300 | $0.002$ | $-0.000$ | $0.000$ | $-0.003$ | $0.043$ | $0.036$ | $0.041$ | $0.021$ | $0.941$ | $0.947$ | $0.944$ | $0.939$ | |

0.50 | 20 | $-0.008$ | $0.001$ | $0.005$ | $-0.047$ | $0.158$ | $0.161$ | $0.175$ | $0.092$ | $0.914$ | $0.917$ | $0.919$ | $0.813$ |

50 | $-0.003$ | $0.001$ | $0.001$ | $-0.019$ | $0.097$ | $0.095$ | $0.102$ | $0.053$ | $0.937$ | $0.930$ | $0.941$ | $0.895$ | |

100 | $-0.001$ | $0.000$ | $0.001$ | $-0.009$ | $0.069$ | $0.065$ | $0.072$ | $0.037$ | $0.940$ | $0.938$ | $0.943$ | $0.922$ | |

200 | $-0.001$ | $0.000$ | $0.001$ | $-0.005$ | $0.048$ | $0.045$ | $0.050$ | $0.026$ | $0.945$ | $0.947$ | $0.947$ | $0.931$ | |

300 | $-0.001$ | $-0.000$ | $0.001$ | $-0.003$ | $0.039$ | $0.036$ | $0.041$ | $0.021$ | $0.944$ | $0.947$ | $0.944$ | $0.939$ | |

0.75 | 20 | $-0.049$ | $0.006$ | $0.015$ | $-0.046$ | $0.180$ | $0.162$ | $0.177$ | $0.091$ | $0.899$ | $0.917$ | $0.920$ | $0.813$ |

50 | $-0.020$ | $0.002$ | $0.005$ | $-0.019$ | $0.109$ | $0.095$ | $0.103$ | $0.053$ | $0.928$ | $0.931$ | $0.942$ | $0.894$ | |

100 | $-0.010$ | $0.001$ | $0.002$ | $-0.009$ | $0.076$ | $0.065$ | $0.072$ | $0.037$ | $0.937$ | $0.938$ | $0.942$ | $0.920$ | |

200 | $-0.005$ | $0.001$ | $0.001$ | $-0.005$ | $0.053$ | $0.045$ | $0.050$ | $0.026$ | $0.941$ | $0.948$ | $0.946$ | $0.932$ | |

300 | $-0.004$ | $0.000$ | $0.001$ | $-0.003$ | $0.043$ | $0.036$ | $0.041$ | $0.021$ | $0.945$ | $0.947$ | $0.945$ | $0.938$ | |

0.90 | 20 | $-0.085$ | $0.010$ | $0.024$ | $-0.046$ | $0.222$ | $0.164$ | $0.181$ | $0.090$ | $0.879$ | $0.917$ | $0.919$ | $0.815$ |

50 | $-0.034$ | $0.004$ | $0.008$ | $-0.019$ | $0.131$ | $0.096$ | $0.105$ | $0.053$ | $0.921$ | $0.931$ | $0.940$ | $0.894$ | |

100 | $-0.017$ | $0.002$ | $0.004$ | $-0.009$ | $0.091$ | $0.065$ | $0.073$ | $0.036$ | $0.934$ | $0.937$ | $0.943$ | $0.920$ | |

200 | $-0.009$ | $0.001$ | $0.002$ | $-0.005$ | $0.064$ | $0.045$ | $0.051$ | $0.025$ | $0.940$ | $0.948$ | $0.947$ | $0.933$ | |

300 | $-0.006$ | $0.000$ | $0.002$ | $-0.003$ | $0.051$ | $0.036$ | $0.041$ | $0.021$ | $0.945$ | $0.948$ | $0.945$ | $0.937$ |

**Table 5.**Empirical bias, RMSE and $95\%$ CP for the true values: ${\delta}_{0}=1.0$, ${\delta}_{1}=1.0$, ${\delta}_{2}=2.0$ and $\alpha =1.0$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.124$ | $-0.009$ | $-0.013$ | $-0.101$ | $0.388$ | $0.297$ | $0.326$ | $0.185$ | $0.871$ | $0.916$ | $0.914$ | $0.799$ |

50 | $0.050$ | $-0.003$ | $-0.007$ | $-0.041$ | $0.231$ | $0.175$ | $0.190$ | $0.106$ | $0.919$ | $0.932$ | $0.942$ | $0.894$ | |

100 | $0.025$ | $-0.001$ | $-0.003$ | $-0.020$ | $0.162$ | $0.119$ | $0.133$ | $0.073$ | $0.933$ | $0.939$ | $0.941$ | $0.922$ | |

200 | $0.012$ | $-0.001$ | $-0.001$ | $-0.010$ | $0.113$ | $0.082$ | $0.092$ | $0.051$ | $0.940$ | $0.949$ | $0.943$ | $0.933$ | |

300 | $0.008$ | $-0.001$ | $-0.000$ | $-0.007$ | $0.093$ | $0.066$ | $0.075$ | $0.041$ | $0.943$ | $0.948$ | $0.945$ | $0.939$ | |

0.25 | 20 | $0.063$ | $-0.004$ | $-0.001$ | $-0.101$ | $0.327$ | $0.298$ | $0.325$ | $0.186$ | $0.895$ | $0.919$ | $0.916$ | $0.799$ |

50 | $0.026$ | $-0.001$ | $-0.002$ | $-0.041$ | $0.198$ | $0.175$ | $0.189$ | $0.106$ | $0.927$ | $0.933$ | $0.942$ | $0.893$ | |

100 | $0.013$ | $-0.000$ | $-0.001$ | $-0.020$ | $0.139$ | $0.119$ | $0.132$ | $0.073$ | $0.936$ | $0.939$ | $0.944$ | $0.921$ | |

200 | $0.006$ | $-0.000$ | $-0.000$ | $-0.010$ | $0.097$ | $0.082$ | $0.092$ | $0.051$ | $0.940$ | $0.949$ | $0.945$ | $0.932$ | |

300 | $0.004$ | $-0.000$ | $0.000$ | $-0.007$ | $0.080$ | $0.066$ | $0.074$ | $0.042$ | $0.942$ | $0.947$ | $0.945$ | $0.938$ | |

0.50 | 20 | $-0.022$ | $0.005$ | $0.017$ | $-0.101$ | $0.296$ | $0.301$ | $0.328$ | $0.187$ | $0.915$ | $0.919$ | $0.921$ | $0.801$ |

50 | $-0.008$ | $0.002$ | $0.005$ | $-0.041$ | $0.179$ | $0.175$ | $0.189$ | $0.107$ | $0.937$ | $0.933$ | $0.943$ | $0.891$ | |

100 | $-0.004$ | $0.001$ | $0.002$ | $-0.020$ | $0.126$ | $0.119$ | $0.131$ | $0.074$ | $0.940$ | $0.939$ | $0.944$ | $0.920$ | |

200 | $-0.003$ | $0.001$ | $0.002$ | $-0.010$ | $0.088$ | $0.082$ | $0.091$ | $0.052$ | $0.944$ | $0.949$ | $0.946$ | $0.930$ | |

300 | $-0.002$ | $0.000$ | $0.001$ | $-0.007$ | $0.072$ | $0.066$ | $0.074$ | $0.042$ | $0.946$ | $0.948$ | $0.945$ | $0.938$ | |

0.75 | 20 | $-0.110$ | $0.016$ | $0.038$ | $-0.100$ | $0.349$ | $0.306$ | $0.337$ | $0.186$ | $0.902$ | $0.920$ | $0.921$ | $0.801$ |

50 | $-0.044$ | $0.006$ | $0.013$ | $-0.041$ | $0.204$ | $0.177$ | $0.191$ | $0.107$ | $0.931$ | $0.933$ | $0.944$ | $0.889$ | |

100 | $-0.021$ | $0.003$ | $0.006$ | $-0.020$ | $0.142$ | $0.119$ | $0.132$ | $0.074$ | $0.934$ | $0.939$ | $0.944$ | $0.918$ | |

200 | $-0.012$ | $0.002$ | $0.003$ | $-0.010$ | $0.099$ | $0.082$ | $0.092$ | $0.051$ | $0.943$ | $0.949$ | $0.947$ | $0.930$ | |

300 | $-0.008$ | $0.001$ | $0.003$ | $-0.007$ | $0.080$ | $0.066$ | $0.074$ | $0.042$ | $0.946$ | $0.949$ | $0.945$ | $0.937$ | |

0.90 | 20 | $-0.177$ | $0.025$ | $0.056$ | $-0.098$ | $0.425$ | $0.311$ | $0.347$ | $0.184$ | $0.885$ | $0.922$ | $0.921$ | $0.801$ |

50 | $-0.070$ | $0.010$ | $0.019$ | $-0.040$ | $0.242$ | $0.178$ | $0.195$ | $0.106$ | $0.924$ | $0.934$ | $0.942$ | $0.889$ | |

100 | $-0.034$ | $0.005$ | $0.009$ | $-0.020$ | $0.166$ | $0.120$ | $0.134$ | $0.073$ | $0.933$ | $0.939$ | $0.945$ | $0.918$ | |

200 | $-0.018$ | $0.002$ | $0.005$ | $-0.010$ | $0.115$ | $0.082$ | $0.093$ | $0.051$ | $0.942$ | $0.949$ | $0.948$ | $0.929$ | |

300 | $-0.012$ | $0.001$ | $0.004$ | $-0.007$ | $0.093$ | $0.066$ | $0.075$ | $0.041$ | $0.944$ | $0.949$ | $0.945$ | $0.937$ |

**Table 6.**Empirical bias, RMSE and $95\%$ CP for the true values ${\delta}_{0}=1.0$, ${\delta}_{1}=1.0$, ${\delta}_{2}=2.0$ and $\alpha =2.0$ of the indicated quantile level ($\tau $), sample size (n) and parameter (${\delta}_{0},{\delta}_{1},\alpha $) with simulated data.

$\mathit{\tau}$ | n | Bias | RMSE | CP${}_{95\%}$ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ${\mathit{\delta}}_{\mathbf{0}}$ | ${\mathit{\delta}}_{\mathbf{1}}$ | ${\mathit{\delta}}_{\mathbf{2}}$ | $\mathit{\alpha}$ | ||

0.10 | 20 | $0.203$ | $-0.012$ | $-0.009$ | $-0.225$ | $0.613$ | $0.489$ | $0.534$ | $0.391$ | $0.867$ | $0.917$ | $0.913$ | $0.775$ |

50 | $0.080$ | $-0.003$ | $-0.008$ | $-0.090$ | $0.352$ | $0.275$ | $0.297$ | $0.217$ | $0.919$ | $0.937$ | $0.941$ | $0.884$ | |

100 | $0.040$ | $-0.001$ | $-0.004$ | $-0.044$ | $0.243$ | $0.183$ | $0.203$ | $0.148$ | $0.929$ | $0.942$ | $0.944$ | $0.916$ | |

200 | $0.019$ | $-0.000$ | $-0.001$ | $-0.022$ | $0.169$ | $0.123$ | $0.139$ | $0.103$ | $0.939$ | $0.951$ | $0.944$ | $0.929$ | |

300 | $0.012$ | $-0.001$ | $-0.000$ | $-0.015$ | $0.137$ | $0.100$ | $0.112$ | $0.083$ | $0.942$ | $0.950$ | $0.946$ | $0.937$ | |

0.25 | 20 | $0.123$ | $-0.005$ | $0.006$ | $-0.224$ | $0.540$ | $0.493$ | $0.537$ | $0.392$ | $0.887$ | $0.917$ | $0.916$ | $0.776$ |

50 | $0.050$ | $-0.000$ | $-0.002$ | $-0.090$ | $0.314$ | $0.276$ | $0.296$ | $0.218$ | $0.926$ | $0.938$ | $0.942$ | $0.884$ | |

100 | $0.025$ | $0.000$ | $-0.002$ | $-0.044$ | $0.218$ | $0.182$ | $0.202$ | $0.149$ | $0.933$ | $0.942$ | $0.945$ | $0.917$ | |

200 | $0.011$ | $0.000$ | $0.000$ | $-0.022$ | $0.151$ | $0.123$ | $0.139$ | $0.103$ | $0.942$ | $0.951$ | $0.945$ | $0.929$ | |

300 | $0.007$ | $-0.000$ | $0.001$ | $-0.015$ | $0.123$ | $0.100$ | $0.111$ | $0.084$ | $0.942$ | $0.950$ | $0.946$ | $0.937$ | |

0.50 | 20 | $-0.049$ | $0.013$ | $0.043$ | $-0.223$ | $0.488$ | $0.506$ | $0.552$ | $0.392$ | $0.919$ | $0.919$ | $0.921$ | $0.779$ |

50 | $-0.017$ | $0.006$ | $0.012$ | $-0.090$ | $0.277$ | $0.278$ | $0.298$ | $0.220$ | $0.938$ | $0.939$ | $0.944$ | $0.882$ | |

100 | $-0.008$ | $0.004$ | $0.005$ | $-0.045$ | $0.190$ | $0.183$ | $0.201$ | $0.150$ | $0.941$ | $0.942$ | $0.947$ | $0.916$ | |

200 | $-0.005$ | $0.002$ | $0.003$ | $-0.023$ | $0.132$ | $0.123$ | $0.138$ | $0.104$ | $0.945$ | $0.951$ | $0.947$ | $0.927$ | |

300 | $-0.004$ | $0.001$ | $0.003$ | $-0.015$ | $0.107$ | $0.100$ | $0.111$ | $0.084$ | $0.946$ | $0.951$ | $0.947$ | $0.936$ | |

0.75 | 20 | $-0.234$ | $0.038$ | $0.093$ | $-0.220$ | $0.624$ | $0.528$ | $0.585$ | $0.389$ | $0.909$ | $0.923$ | $0.923$ | $0.779$ |

50 | $-0.089$ | $0.015$ | $0.029$ | $-0.089$ | $0.335$ | $0.282$ | $0.306$ | $0.219$ | $0.933$ | $0.940$ | $0.945$ | $0.879$ | |

100 | $-0.043$ | $0.007$ | $0.012$ | $-0.045$ | $0.225$ | $0.184$ | $0.203$ | $0.149$ | $0.936$ | $0.942$ | $0.947$ | $0.913$ | |

200 | $-0.023$ | $0.004$ | $0.007$ | $-0.023$ | $0.155$ | $0.124$ | $0.139$ | $0.103$ | $0.943$ | $0.951$ | $0.947$ | $0.927$ | |

300 | $-0.016$ | $0.002$ | $0.005$ | $-0.015$ | $0.124$ | $0.100$ | $0.112$ | $0.083$ | $0.944$ | $0.950$ | $0.948$ | $0.936$ | |

0.90 | 20 | $-0.330$ | $0.051$ | $0.119$ | $-0.222$ | $0.739$ | $0.541$ | $0.607$ | $0.387$ | $0.902$ | $0.925$ | $0.927$ | $0.776$ |

50 | $-0.126$ | $0.018$ | $0.035$ | $-0.094$ | $0.384$ | $0.285$ | $0.311$ | $0.219$ | $0.928$ | $0.940$ | $0.946$ | $0.876$ | |

100 | $-0.063$ | $0.008$ | $0.013$ | $-0.050$ | $0.255$ | $0.186$ | $0.205$ | $0.149$ | $0.935$ | $0.941$ | $0.947$ | $0.910$ | |

200 | $-0.033$ | $0.003$ | $0.005$ | $-0.028$ | $0.174$ | $0.124$ | $0.140$ | $0.104$ | $0.940$ | $0.951$ | $0.948$ | $0.923$ | |

300 | $-0.023$ | $0.001$ | $0.003$ | $-0.020$ | $0.139$ | $0.101$ | $0.113$ | $0.084$ | $0.942$ | $0.947$ | $0.950$ | $0.932$ |

**Table 7.**ML estimates and SEs of the indicated model, parameter and quantile level ($\tau $) with vote data.

Model | Parameter | Estimate | SE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|

$\mathit{\tau}$ Level | $\mathit{\tau}$ Level | ||||||||||

0.10 | 0.25 | 0.50 | 0.75 | 0.90 | 0.10 | 0.25 | 0.50 | 0.75 | 0.90 | ||

KUMA | $\alpha $ | $12.204$ | $12.209$ | $12.215$ | $12.222$ | $12.228$ | $1.152$ | $1.152$ | $1.152$ | $1.151$ | $1.151$ |

${\delta}_{0}$ | $1.717$ | $2.153$ | $2.649$ | $3.158$ | $3.629$ | $0.462$ | $0.529$ | $0.612$ | $0.702$ | $0.786$ | |

${\delta}_{1}$ | $-2.081$ | $-2.425$ | $-2.862$ | $-3.352$ | $-3.835$ | $0.764$ | $0.877$ | $1.015$ | $1.161$ | $1.296$ | |

LEEG | $\alpha $ | $18.176$ | $18.183$ | $18.190$ | $18.198$ | $18.207$ | $1.825$ | $1.825$ | $1.825$ | $1.826$ | $1.826$ |

${\delta}_{0}$ | $2.155$ | $2.506$ | $2.937$ | $3.481$ | $4.197$ | $0.415$ | $0.450$ | $0.496$ | $0.562$ | $0.660$ | |

${\delta}_{1}$ | $-2.708$ | $-3.005$ | $-3.395$ | $-3.924$ | $-4.662$ | $0.677$ | $0.738$ | $0.816$ | $0.919$ | $1.062$ | |

UBS | $\alpha $ | $0.279$ | $0.279$ | $0.279$ | $0.279$ | $0.279$ | $0.023$ | $0.023$ | $0.023$ | $0.023$ | $0.023$ |

${\delta}_{0}$ | $2.457$ | $2.596$ | $2.760$ | $2.925$ | $3.077$ | $0.670$ | $0.645$ | $0.623$ | $0.605$ | $0.592$ | |

${\delta}_{1}$ | $-3.281$ | $-3.168$ | $-3.066$ | $-2.978$ | $-2.916$ | $1.123$ | $1.081$ | $1.043$ | $1.012$ | $0.989$ | |

UBURR | $\alpha $ | $40.007$ | $40.004$ | $40.085$ | $40.663$ | $40.661$ | $11.258$ | $11.249$ | $11.280$ | $11.539$ | $11.538$ |

${\delta}_{0}$ | $1.907$ | $2.294$ | $2.784$ | $3.398$ | $4.068$ | $0.423$ | $0.484$ | $0.570$ | $0.671$ | $0.788$ | |

${\delta}_{1}$ | $-2.368$ | $-2.733$ | $-3.184$ | $-3.763$ | $-4.390$ | $0.692$ | $0.797$ | $0.938$ | $1.102$ | $1.289$ | |

UCHEN | $\alpha $ | $3.712$ | $3.712$ | $3.712$ | $3.712$ | $3.712$ | $0.335$ | $0.335$ | $0.335$ | $0.334$ | $0.334$ |

${\delta}_{0}$ | $2.246$ | $2.392$ | $2.578$ | $2.803$ | $3.057$ | $0.665$ | $0.661$ | $0.650$ | $0.634$ | $0.619$ | |

${\delta}_{1}$ | $-2.939$ | $-2.908$ | $-2.848$ | $-2.766$ | $-2.683$ | $1.113$ | $1.106$ | $1.087$ | $1.057$ | $1.026$ | |

UHN | ${\delta}_{0}$ | $0.742$ | $1.672$ | $2.422$ | $2.956$ | $3.314$ | $1.408$ | $1.408$ | $1.408$ | $1.408$ | $1.408$ |

${\delta}_{1}$ | $-3.000$ | $-3.000$ | $-3.000$ | $-3.000$ | $-3.000$ | $2.353$ | $2.353$ | $2.353$ | $2.353$ | $2.353$ | |

ULOG | $\alpha $ | $5.304$ | $5.304$ | $5.304$ | $5.305$ | $5.304$ | $0.512$ | $0.512$ | $0.512$ | $0.512$ | $0.512$ |

${\delta}_{0}$ | $2.506$ | $2.713$ | $2.921$ | $3.127$ | $3.335$ | $0.566$ | $0.564$ | $0.563$ | $0.563$ | $0.564$ | |

${\delta}_{1}$ | $-3.338$ | $-3.338$ | $-3.338$ | $-3.338$ | $-3.338$ | $0.939$ | $0.939$ | $0.939$ | $0.939$ | $0.939$ | |

>UWEI | $\alpha $ | $3.768$ | $3.768$ | $3.767$ | $3.767$ | $3.767$ | $0.324$ | $0.324$ | $0.324$ | $0.324$ | $0.324$ |

${\delta}_{0}$ | $2.302$ | $2.414$ | $2.573$ | $2.781$ | $3.027$ | $0.697$ | $0.676$ | $0.652$ | $0.629$ | $0.610$ | |

${\delta}_{1}$ | $-3.032$ | $-2.940$ | $-2.835$ | $-2.729$ | $-2.637$ | $1.169$ | $1.132$ | $1.091$ | $1.049$ | $1.013$ |

**Table 8.**Values of the Akaike information criterion for the indicated model and quantile level ($\tau $) with vote data.

Model | $\mathit{\tau}$ Level | ||||
---|---|---|---|---|---|

0.10 | 0.25 | 0.50 | 0.75 | 0.90 | |

KUMA | $-186.6585$ | $-186.7418$ | $-186.8450$ | $-186.9566$ | $-187.0622$ |

LEEG | $-181.1746$ | $-181.2213$ | $-181.2757$ | $-181.3365$ | $-181.3965$ |

UBS | $-188.7764$ | $-188.7825$ | $-188.7883$ | $-188.7932$ | $-188.7969$ |

UBUR | $-180.7540$ | $-180.7524$ | $-180.7513$ | $-180.7531$ | $-180.7528$ |

UCHE | $-178.9413$ | $-178.9489$ | $-178.9513$ | $-178.9480$ | $-178.9416$ |

UHN | $-112.5021$ | $-112.5021$ | $-112.5021$ | $-112.5021$ | $-112.5021$ |

ULOG | $-186.1657$ | $-186.1657$ | $-186.1657$ | $-186.1657$ | $-186.1657$ |

UWEI | $-179.3758$ | $-179.3678$ | $-179.3581$ | $-179.3479$ | $-179.3385$ |

**Table 9.**ML estimates and SEs of the indicated model, parameter and quantile level ($\tau $) with arm data.

Model | Parameter | Estimate | SE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|

$\mathit{\tau}$ Level | $\mathit{\tau}$ Level | ||||||||||

0.10 | 0.25 | 0.50 | 0.75 | 0.90 | 0.10 | 0.25 | 0.50 | 0.75 | 0.90 | ||

KUMA | $\alpha $ | $4.705$ | $4.715$ | $4.724$ | $4.731$ | $4.736$ | $0.210$ | $0.210$ | $0.210$ | $0.210$ | $0.210$ |

${\delta}_{0}$ | $-3.071$ | $-2.894$ | $-2.754$ | $-2.658$ | $-2.599$ | $0.135$ | $0.140$ | $0.147$ | $0.156$ | $0.163$ | |

${\delta}_{1}$ | $0.004$ | $0.004$ | $0.004$ | $0.004$ | $0.005$ | $0.001$ | $0.001$ | $0.001$ | $0.001$ | $0.001$ | |

${\delta}_{2}$ | $7.291$ | $7.721$ | $8.226$ | $8.743$ | $9.210$ | $0.551$ | $0.577$ | $0.609$ | $0.644$ | $0.676$ | |

${\delta}_{3}$ | $-0.730$ | $-0.771$ | $-0.820$ | $-0.870$ | $-0.915$ | $0.033$ | $0.035$ | $0.037$ | $0.039$ | $0.041$ | |

${\delta}_{4}$ | $-0.072$ | $-0.074$ | $-0.076$ | $-0.078$ | $-0.078$ | $0.047$ | $0.050$ | $0.054$ | $0.057$ | $0.060$ | |

${\delta}_{5}$ | $-0.196$ | $-0.206$ | $-0.216$ | $-0.227$ | $-0.236$ | $0.047$ | $0.050$ | $0.053$ | $0.056$ | $0.060$ | |

LEEG | $\alpha $ | $7.587$ | $7.609$ | $7.629$ | $7.648$ | $7.671$ | $0.375$ | $0.375$ | $0.375$ | $0.375$ | $0.374$ |

${\delta}_{0}$ | $-3.159$ | $-3.056$ | $-2.968$ | $-2.897$ | $-2.850$ | $0.142$ | $0.147$ | $0.154$ | $0.163$ | $0.175$ | |

${\delta}_{1}$ | $0.004$ | $0.005$ | $0.005$ | $0.005$ | $0.006$ | $0.001$ | $0.001$ | $0.001$ | $0.001$ | $0.001$ | |

${\delta}_{2}$ | $8.331$ | $8.746$ | $9.269$ | $9.934$ | $10.785$ | $0.650$ | $0.676$ | $0.711$ | $0.757$ | $0.817$ | |

${\delta}_{3}$ | $-0.870$ | $-0.909$ | $-0.957$ | $-1.020$ | $-1.100$ | $0.035$ | $0.037$ | $0.039$ | $0.041$ | $0.045$ | |

${\delta}_{4}$ |