# A New Insight on Physical Phenomenology: A Review

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Multidimensional Geometrical Representation of Physical Reality

#### 1.2. Potentiality of the Generalization of Currently Used Representations

#### 1.2.1. Extension of the Number of Dimensions

#### 1.2.2. Extension in the Use of the Concept of Metrics

#### 1.3. Gauge Fields as an Intrinsic Consequence of Geometry

## 2. Features of the MPF Vision of Minkowski Space

#### 2.1. Recall on the Results of the Deformed Minkowski Metrics

^{μ}= (ct, x, y, z), with c denoting the vacuum light-speed.

_{0}) [41,42,43].

#### 2.2. Three Main Properties of the Generalized Lagrange Space

- the curvature defined as the application of Christoffel generalized symbols to the coefficients of the metrical canonical H−connection of generalized Lagrange space GL
^{N}; - the torsion defined as the distinguished tensors, d-tensors, of the metrical connection of the generalized Lagrange space GL
^{N}; - the deflection defined as the horizontal and vertical covariant derivatives of the Liouville vector fields on the tangent manifold (TM), defined in Equation (35) of [32].

#### 2.3. Internal Fields as a Way to “Store” the Energy of the Deformation

_{0}for the metric of nuclear interactions. This can happen when the electromagnetic field inside the electromagnetic space itself, in the absence of an external electromagnetic field, “mimics”, thanks to Equation (52) of [32], a property of the nuclear space. In this sense, there can also be an alteration of the reproducibility of phenomena if these conditions are not taken into account (see Section 4).

## 3. Current Theoretical Landscape

#### 3.1. The Maximal Symmetry of the S-Matrix and the Arising of Supersymmetry

#### 3.2. Supergravity Theories, as Candidates for a Unified Description of General Relativity and Quantum Field Theory

#### 3.3. The Advent of Superstrings and the Additional Dimension

#### 3.4. Central Questions Still Pending in the Physics of Fundamental Interactions

- combining general relativity and quantum theory into a single theory that can claim to be the complete theory of nature, i.e., the problem of quantum gravity;
- resolving the problems in the foundations of quantum mechanics, either by making sense of the theory as it stands or by inventing a new theory that does make sense;
- determining whether or not the various particles and forces can be unified in a theory that explains them all as manifestations of a single, fundamental entity;
- explaining how the values of the free constants in the standard model of particle physics are chosen in nature;
- explaining the possible missing matter and the dark energy, as well as the possible modifications of gravity on large scales.

## 4. Possible Experimental Phenomena Expected from the Properties of Deformed Minkowski Space and Available Candidate Evidence

#### 4.1. Anomalies in the Double-Slit-Like Experiments

_{µν}see Equation (53) of [32] and the vertical one, f

_{µν}, see Equation (54) of [32]. Whereas F

_{µν}is strictly related to the presence of the external electromagnetic field F

_{µν}, vanishing if F

_{µ}

_{ν}= 0, the vertical field f

_{µν}is geometrical in nature, depending only on the deformed metric tensor g

_{DMµν}(E) of GL

^{4}= DM and on the variable appearing in the metric (1) E, see Equation (54) of [32]. Therefore, it is also present in spacetime regions where no external electromagnetic field occurs, see Equations (54)–(58) of [32]. In our opinion, the arising of the internal electromagnetic fields associated with the deformed metric of DM, as a generalized Lagrange space, is at the very core of the physical, dynamic interpretation of the experimental results on the anomalous photon behavior. Namely, the dynamic effects of the hollow wave of the photon, associated to the deformation of spacetime, which manifest themselves in the photon behavior contradicting both classical and quantum electrodynamics, arise from the presence of the internal v-electromagnetic field f

_{µν}(in turn strictly connected to the geometrical structure of DM).

_{µν,}which is responsible for the “shadow of light” effect. Actually, this effect can also be interpreted as an example of the effective action of the “geometric vacuum”, which is “full” of deformation due to the energy stored in the geometry of deformed Minkowski space in the generalized Lagrange space in the sense explained in Section 1.3.

#### 4.2. Nuclear Metamorphosis

#### 4.3. Torsional Antennas

#### 4.4. Suggestion for Further Analysis and Experimental Activity

## 5. Concluding Remarks and Outlook on Experimental Opportunities

- the curvature property is concordantly related to gravitational interaction;
- the torsion property is related to the phenomenon of anisotropy (asymmetric angular behavior) found in nature, as in the case of the torsional antenna, and anisotropic neutron emissions;
- the deflection property is connectable to the asymmetry phenomenon found in nature, as in the case of cosmic microwave frequency background radiation, to the violation of parity symmetry in the lepton interaction and the asymmetric emission of neutrons and alfa particles.

_{µν}and the geometric vacuum, as it has been described in the present work.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Poincaré, H. La Théorie de Lorentz et le Principe de Réaction, Archives Néerlandaises des Sciences Exactes et Naturelles; Wikisource: Saint Petersburg, FL, USA, 1900; Volume 5, p. 252. [Google Scholar]
- Lorentz, H.A. Versuch Einer Theorie der Elektrischen und Optischen Erscheinungen in Bewegten Körpern; Brill, E.J.: Leiden, The Netherlands, 1895. [Google Scholar]
- Connes, A.; Marcolli, M. Non commutative Geometry Quantum Fields and Motives; American Mathematical Society: Providence, RI, USA, 2007; Volume 55. [Google Scholar]
- Einstein, A. Conference ‘Geometrie und Erfahrung’ (Geometry and Experience); Springer: Berlin/Heidelberg, Germany, 1921. [Google Scholar]
- Steenrod, N. The Topology of Fibre Bundles; Princeton Univ. Press: Princeton, NJ, USA, 1951. [Google Scholar]
- Miron, R.; Jannussis, A.; Zet, G. Energy-Dependent Minkowski Metric in Space-Time. In Proceedings of The Conference of Applied Differential Geometry—General Relativity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, Thessaloniki, Greece, 28 August–2 September 2000; Tangas, G., Ed.; Geometry Balkan Press: Bucharest, Romania, 2004; p. 101. [Google Scholar]
- Wigner, E. Group Theory; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Lichtenberg, D. Unitary Symmetry and Elementary Particles, 2nd ed.; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Beller, M. The Genesis of Bohr’s Complementarity Principle and the Bohr-Heisenberg Dialogue. In The Scientific Enterprise. Boston Studies in the Philosophy of Science; Ullmann-Margalit, E., Ed.; Springer: Dordrecht, The Netherlands, 1992; Volume 146. [Google Scholar]
- Gell-Mann, M. The Quark and the Jaguar; W.H. Freeman and Co.: New York, NY, USA, 1994; p. 89. [Google Scholar]
- Minkowski, H. Raum und Zeit (Space and Time). Phys. Zeitschriff
**1908**, 10, 75. [Google Scholar] - Poincaré, H. Sur la dynamique de l’électron. Rend. Circ. Matem. Palermo
**1906**, 21, 129–175. [Google Scholar] [CrossRef] - Polchinski, J. String Theory vol.1,2. In Cambridge Monograph on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Popper, K. Conjecture and Refutation, 1st ed.; Routledge Classic: London, UK, 1963; Volume 17. [Google Scholar]
- Penrose, R. The Emperor’s New Mind; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Bridgman, P.W. The Logic of Modern Physics; Macmillan: New York, NY, USA, 1927. [Google Scholar]
- Kaluza, T. Zum Unitätsproblem der Physik. Sitzungsber Preuss. Akad. Wiss Berlin (Math. Phys.)
**1921**, 966–972. [Google Scholar] [CrossRef] - Klein, O. Quantum Theory and Five-Dimensional Theory of Relativity. Z. Phys.
**1926**, 37, 895–906, (In German and English). [Google Scholar] [CrossRef] - Wesson, P. Space Time Matter; World Scientific: Singapore, 1999. [Google Scholar]
- Randall, L.; Sundrum, R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett.
**1999**, 83, 3370. [Google Scholar] [CrossRef][Green Version] - Bellucci, S.; Saharian, A.A.; Sargsyan, H.G.; Vardanyan, V.V. Fermionic vacuum currents in topologically nontrivial braneworlds: Two-brane geometry. Phys. Rev. D
**2020**, 101, 045020. [Google Scholar] [CrossRef][Green Version] - Bellucci, S.; Saharian, A.A.; Simonyan, D.H.; Vardanyan, V.V. Fermionic currents in topologically nontrivial braneworlds. Phys. Rev. D
**2018**, 98, 085020. [Google Scholar] [CrossRef][Green Version] - Bellucci, S.; Saharian, A.A.; Vardanyan, V. Hadamard function and the vacuum currents in braneworlds with compact dimensions: Two-brane geometry. Phys. Rev. D
**2016**, 93, 084011. [Google Scholar] [CrossRef][Green Version] - Bellucci, S.; Saharian, A.A.; Vardanyan, V. Vacuum currents in braneworlds on AdS bulk with compact dimensions. J. High Energy Phys.
**2015**, 2015, 92. [Google Scholar] [CrossRef][Green Version] - Francaviglia, M.; Mignani, R.; Cardone, F. Five-dimensional relativity with energy as extra dimension. Gen. Relat. Gravit.
**1999**, 31, 1049–1070. [Google Scholar] - Cardone, F.; Francaviglia, M.; Mignani, R. Energy-Dependent Phenomenological Metrics and Five-Dimensional Einstein Equations. Found. Phys. Lett.
**1999**, 12, 281–289. [Google Scholar] [CrossRef] - Mignani, R.; Pessa, E.; Resconi, G. Electromagnetic-like generation of unified-Gauge theories. Phys. Essays
**1999**, 12, 61–79. [Google Scholar] [CrossRef] - Cardone, F.; Mignani, R. Energy and Geometry—An Introduction to Deformed Special Relativity; World Scientific: Singapore, 2004. [Google Scholar]
- Cardone, F.; Mignani, R. Deformed Spacetime—Geometrizing Interactions in Four and Five Dimensions; Springer: Heidelberg, Germany; Dordrecht, The Netherlands, 2007. [Google Scholar]
- Sachs, S. General Relativity and Matter; Reidel Pub. Co.: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Sachs, M. Quantum Mechanics from General Relativity: An Approximation for a Theory of Inertia; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Mignani, R.; Cardone, F.; Petrucci, A. Metric gauge fields in deformed special relativity. Electron. J. Theor. Phys.
**2013**, 10, 1–20. [Google Scholar] - Mignani, R.; Cardone, F.; Petrucci, A. Generalized lagrange structure of deformed Minkowski spacetime. Nat. Sci.
**2014**, 6, 339–410. [Google Scholar] [CrossRef][Green Version] - Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Barcelo, C.; Visser, M. Classical and Quantum Gravity. Class. Quantum Gravity
**2000**, 17, 3843. [Google Scholar] - Bellucci, S.; Faraoni, V. Energy conditions and classical scalar fields. Nucl. Phys. B
**2002**, 640, 453–468. [Google Scholar] [CrossRef] - Bellucci, S.; Faraoni, V.; Babusci, D. Scalar gravitational waves and Einstein frame. Phys. Lett. A
**2001**, 282, 357–361. [Google Scholar] [CrossRef][Green Version] - Finzi, B. “Relatività Generale e Teorie Unitarie”, in Cinquant’anni di Relatività; Pantaleo, M., Ed.; Giunti: Firenze, Italy, 1955; p. 194. (In Italian) [Google Scholar]
- Cardone, F.; Mignani, R.; Petrucci, A. The principle of solidarity: Geometrizing interactions. In Einstein and Hilbert: Dark Matter; Dvoeglazov, V.V., Ed.; Nova Science: Commack, NY, USA, 2011; p. 19. [Google Scholar]
- Cardone, F.; Mignani, R. Metric description of hadronic interaction from Bose-Einstein correlation. J. Exp. Theor. Phys.
**1996**, 83, 435. [Google Scholar] - Cardone, F.; Mignani, R. Broken Lorentz invariance and metric descriptions of interactions in a deformed Minkowski space. Gravit. Cosmol.
**1998**, 4, 311. [Google Scholar] - Cardone, F.; Mignani, R. Energy-Dependent Metric for Gravitation from Clock-Rate Experiments. Int. J. Mod. Phys. A
**1999**, 14, 3799–3811. [Google Scholar] [CrossRef] - Miron, R.; Anastasiei, M. Energy-dependent metric for gravitation from clock-rate experiments. In The Geometry of Lagrange Spaces: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Coleman, S.; Mandula, J. All possible symmetries of the S matrix. Phys. Rev.
**1967**, 159, 1251. [Google Scholar] [CrossRef] - Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 2000; Volume 3. [Google Scholar]
- Witten, E. The unity of fundamental interactions. In Proceedings, International School of Subnuclear Physics, Erice 1981; Zichichi, A., Ed.; Plenum Press: New York, NY, USA, 1983; p. 305. [Google Scholar]
- Golfand, Y.A.; Likhtman, E.P. Extension of the Algebra of Poincare Group Generators and Violation of P invariance. JETP Lett.
**1971**, 13, 323. [Google Scholar] - Haag, R.; Sohnius, M.; Łopuszański, J.T. All possible generators of supersymmetries of the S matrix. Nucl. Phys. B
**1975**, 88, 257. [Google Scholar] [CrossRef] - Wess, J.; Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B
**1974**, 70, 39. [Google Scholar] [CrossRef][Green Version] - Freedman, D.Z.; van Nieuwenhuizen, P.; Ferrara, S. Progress toward a theory of supergravity. Phys. Rev. D
**1976**, 13, 3214. [Google Scholar] [CrossRef] - Deser, S.; Zumino, B. Consistent supergravity. Phys. Lett. B
**1976**, 62, 335. [Google Scholar] [CrossRef][Green Version] - Polchinski, J. String Theory: Volume I; Cambridge University Press: Cambridge, UK, 1998; p. 4. [Google Scholar]
- T’hooft, G.; Veltman, M. One loop divergencies in the theory of gravitation. Ann. De L Inst. Henri Poincare-Phys. Theor.
**1974**, 20, 69–94. [Google Scholar] - Goroff, M.H.; Sagnotti, A. The ultraviolet behavior of Einstein gravity. Nucl. Phys. B
**1986**, 266, 70. [Google Scholar] [CrossRef] - Van de Ven, A.E.M. Two loop quantum gravity. Nucl. Phys. B
**1992**, 378, 309. [Google Scholar] [CrossRef] - Grisaru, M.T. Two-loop renormalizability of supergravity. Phys. Lett.
**1977**, 66B, 75. [Google Scholar] [CrossRef] - Tomboulis, E.T. On the two-loop divergences of supersymmetric gravitation. Phys. Lett.
**1977**, 67B, 417. [Google Scholar] [CrossRef] - Deser, S.; Kay, J.H.; Stelle, K.S. Renormalizability properties of supergravity. Phys. Rev. Lett.
**1977**, 38, 527. [Google Scholar] [CrossRef][Green Version] - Kaku, M.; Townsend, P.K.; van Nieuwenhuizen, P. Superconformal unified field theory. Phys. Rev. Lett.
**1977**, 39, 1109. [Google Scholar] [CrossRef] - Ferrara, S.; Zumino, B. Structure of conformal supergravity. Nucl. Phys. B
**1978**, 134, 301. [Google Scholar] [CrossRef][Green Version] - Martín, C.P. Unimodular gravity and the lepton anomalous magnetic moment at one-loop. J. Cosmol. Astropart. Phys. 2017. [CrossRef][Green Version]
- Bellucci, S.; Cheng, H.-Y.; Deser, S. Finiteness of gravitational corrections to magnetic moments and supergravity embedding. Nucl. Phys. B
**1985**, 252, 389. [Google Scholar] [CrossRef] - Green, M.B.; Schwarz, J.H. Supersymmetric dual string theory. (III). Loops and renormalization. Nucl. Phys. B
**1982**, 198, 441. [Google Scholar] [CrossRef] - Bern, Z.; Dixon, L.; Dunbar, D.C.; Perelstein, M.; Rozowsky, J.S. On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences. Nucl. Phys. B
**1998**, 530, 401. [Google Scholar] [CrossRef][Green Version] - Bjerrum-Bohr, N.E.J.; Dunbar, D.C.; Ita, H.; Perkins, W.B.; Risager, K. MHV-vertices for gravity amplitudes. JHEP
**2006**, 0601, 009. [Google Scholar] [CrossRef] - Bern, Z.; Carrasco, J.J.; Dixon, L.J.; Johansson, H.; Kosower, D.A.; Roiban, R. Cancellations Beyond Finiteness in N=8 Supergravity at Three Loops. Phys. Rev. Lett.
**2007**, 98, 161303. [Google Scholar] [CrossRef][Green Version] - Schwarz, J.H. Physical States and Pomeron Poles in the Dual Pion Model. Nucl. Phys.
**1972**, B46, 61. [Google Scholar] [CrossRef] - Feynman, R. 1987 Interview Published in Superstrings: A Theory of Everything? Davies, P.C.W., Brown, J.R., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 193–194. ISBN 0521354625. [Google Scholar]
- Rovelli, C. A critical look at strings. Found. Phys.
**2011**, 43, 8. [Google Scholar] [CrossRef][Green Version] - Dvali, G.; Gabadadze, G.; Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B
**2000**, 485, 208. [Google Scholar] [CrossRef][Green Version] - Parisi, G. On the one-dimensional discretized string. Phys. Lett. B
**1990**, 238, 209. [Google Scholar] [CrossRef] - Marinari, E.; Parisi, G. The Supersymmetric One-Dimensional String. Phys. Lett. B
**1990**, 240, 375. [Google Scholar] [CrossRef] - Bellucci, S. Broken supersymmetry in the matrix model on a circle. Z. Phys. C
**1992**, 54, 565. [Google Scholar] [CrossRef] - Bellucci, S. Duality transformation of the one dimensional supersymmetric string. Phys. Lett. B
**1991**, 257, 35–39. [Google Scholar] [CrossRef] - Bellucci, S. The Discretization of D = 2 surfaces and supersymmetry invariance. Nucl. Phys. B-Proc. Suppl.
**1991**, 20, 737–740. [Google Scholar] [CrossRef] - Bellucci, S.; Govindrajan, T.R.; Kumar, A.; Oerter, R.N. On The Nonperturbative Solution of D = 1 Superstring. Phys. Lett. B
**1990**, 249, 49–55. [Google Scholar] [CrossRef] - Cardone, F.; Mignani, R.; Perconti, W.; Scrimaglio, R. The shadow of light: Non-lorentian behavior of photon systems. Phys. Lett. A
**2004**, 326, 1. [Google Scholar] [CrossRef] - Scrimaglio, R.; Petrucci, A.; Perconti, W.; Mignani, R.; Cardone, F. The shadow of light: Further experimental evidences. Int. J. Mod. Phys. B
**2006**, 20, 85. [Google Scholar] - Scrimaglio, R.; Petrucci, A.; Perconti, W.; Mignani, R.; Cardone, F. The shadow of light: Lorentz invariance and complementarity principle in anomalous photon behavior. lnt. J. Mod. Phys. B
**2006**, 20, 1107. [Google Scholar] - Scrimaglio, R.; Petrucci, A.; Perconti, W.; Mignani, R.; Cardone, F. Evidences of photon behavior contradicting known electrodynamics. Ann. Fond. L. de Broglie
**2008**, 33, 319. [Google Scholar] - Ranfagni, A.; Mugnai, D.; Ruggeri, R. Unexpected behavior of crossing microwave beams. Phys. Rev. E
**2004**, 69, 027601. [Google Scholar] [CrossRef] [PubMed] - Ranfagni, A.; Mugnai, D. Superluminal behavior in the near field of crossing microwave beams. Phys. Lett. A
**2004**, 322, 146. [Google Scholar] [CrossRef] - Mignani, R.; Recami, E. Classical theory of tachyons: Special relativity extended to superluminal frames and objects. Riv. Nuovo Cim.
**1974**, 4, 209–290 E398. [Google Scholar] - Bartocci, U.; Capria, M.M. Some remarks on classical electromagnetism. Am. J. Phys.
**1991**, 59, 1030. [Google Scholar] [CrossRef] - Duro, S.; Cardone, F. Anisotropy angle of the DST emission. Mod. Phys. Lett. B
**2014**, 28, 1450156–1/8. [Google Scholar] - Cherubini, G.; Rosada, A.; Cardone, F. Deformed space-time neutrons: Spectra and detection. J. Adv. Phys.
**2018**, 7, 1–9. [Google Scholar] - Albertini, G.; Cardone, F.; Lammardo, M.; Petrucci, A.; Ridolfi, F.; Rosada, A.; Sala, V.; Santoro, E. Atomic and isotopic changes induced by ultrasounds in iron. J. Radioanal. Nucl. Chem.
**2015**, 304, 955. [Google Scholar] [CrossRef] - Ridolfi, F. Products and thresholds of deformed space-time reactions in iron. J. Adv. Phys.
**2016**, 5, 55. [Google Scholar] [CrossRef] - Cardone, F.; Albertini, G.; Bassani, D.; Cherubini, G.; Guerriero, E.; Mignani, R.; Monti, M.; Petrucci, A.; Ridolfi, F.; Rosada, A.; et al. Nuclear metamorphosis in mercury. Int. J. Mod. Phys. B
**2015**, 29, 1550239. [Google Scholar] [CrossRef] - Cardone, F.; Albertini, G.; Bassani, D.; Cherubini, G.; Guerriero, E.; Mignani, R.; Monti, M.; Petrucci, A.; Ridolfi, F.; Rosada, A.; et al. Deformed space-time transformation in mercury. Int. J. Mod. Phys. B
**2017**, 13, 1750168. [Google Scholar] [CrossRef] - Capotosto, R.; Rosetto, F. Phenomenological rules for nuclear metabarysis. J. Adv. Phys.
**2016**, 5, 80. [Google Scholar] [CrossRef] - Albertini, G.; Capotosto, R. Deformed space-time reactions: Towards nuclear metabarysis. J. Adv. Phys.
**2016**, 5, 84. [Google Scholar] [CrossRef] - Rosada, A.; Cardone, F. Energy spectra and fluence of the neutrons produced in deformed space-time conditions. Mod. Phys. Lett. B
**2016**, 30, 1650346–1/7. [Google Scholar] - Albertini, G.; Bassani, D.; Cardone, F. Two questions about a non-flat nuclear space-time. Eur. Phys. J. Plus
**2018**, 133, 39. [Google Scholar] [CrossRef] - Cardone, F.; Carpinteri, A.; Lacidogna, G. Piezonuclear neutrons from fracturing of inert solids. Phys. Lett. A
**2009**, 373, 4158–4163. [Google Scholar] [CrossRef] - Cardone, F.; Albertini, G.; Bassani, D.; Cherubini, G.; Petrucci, A.; Rosada, A. DST-deactivation of nickel-63 nitrate. Radiochim. Acta
**2019**, 107, 469. [Google Scholar] [CrossRef] - Rosada, A.; Cardone, F.; Avino, P. The astonishing 63Ni radioactivity reduction in radioactive wastes by means of ultrasounds application. Springer Nat. Appl. Sci.
**2019**, 1, 1319. [Google Scholar] [CrossRef][Green Version] - Albertini, G.; Cardone, F.; Cherubini, G.; Guerriero, E.; Rosada, A. Reduction of the radiation in radioactive substances. Int. J. Mod. Phys. B
**2020**, 34, 2050001. [Google Scholar] [CrossRef] - Storms, E. Status of cold fusion (2010). Naturwissenschaften
**2010**, 97, 861–881. [Google Scholar] [CrossRef] [PubMed] - Paci, D.; Vedruccio, C.; Ciciulla, F.; Genovese, D.; Albertini, G. Analysis and characterization of a twisted double loop antenna. arXiv
**2020**, arXiv:2002.08128. [Google Scholar] - Cardone, F.; Albertini, G.; Bassani, D. Lorentz Violation in Torsional Antenna. Found. Sci.
**2020**. [Google Scholar] [CrossRef] - Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. WMAP Collaboration. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl.
**2011**, 192, 18. [Google Scholar] [CrossRef][Green Version] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-xiii. cosmological parameters. Astron. Astrophys.
**2014**, 594, A13. [Google Scholar] - Perconti, W.; La Posta, C.; Cardone, F. Cosmic microwave background radiation preferred directions and asymmetry in Lorentz violation. J. Adv. Phys.
**2015**, 4, 1–5. [Google Scholar] - Perconti, W.; Petrucci, A.; Cardone, F. Deformed space time asymmetric emissions and cosmic microwave background radiation preferred directions. J. Adv. Phys.
**2016**, 6, 1–5. [Google Scholar] - Petrucci, A.; Perconti, W.; Cardone, F. Lorentz violation, cosmic microwave background radiation anisotropy and critical energy density of the universe. J. Adv. Phys.
**2018**, 7, 1–7. [Google Scholar] - Gaspero, M.; Mignani, R.; Cardone, F. Non standard peak values of the Bose-Einstein correlations and their.possible interpretation by a metric description of strong interactions. Eur. Phys. J. C
**1998**, 4, 705–709. [Google Scholar] - Scott, W.G. Results on Jets from the UA1 Experiment. In QCD Hard Hadronic Processes; Cox, B., Ed.; NATO ASI Series (Series B: Physics); Springer: Boston, MA, USA, 1988; Volume 197. [Google Scholar]
- Jonker, M. RAMPING ’97. Available online: https://cds.cern.ch/record/382295/files/MJ2_07.PDF (accessed on 1 April 2021).
- Cardone, F. On the zero-point radiation and the inverse Compton scattering. Il Nuovo Cim.
**1991**, 104A, 757. [Google Scholar] [CrossRef] - Di Domenico, A.N. Inverse Compton scattering of thermal radiation at LEP AND LEP-200. Part. Accel.
**1992**, 39, 137–146. [Google Scholar] - Bellucci, S.; Ferrara, S.; Shcherbakov, A.; Yeranyan, A. Attractors and first order formalism in five dimensions revisited. Phys. Rev. D
**2011**, 83, 065003. [Google Scholar] [CrossRef][Green Version] - Colosi, D.; Rovelli, C. What is a particle? Class. Quantum Gravity
**2009**, 26, 025002. [Google Scholar] [CrossRef][Green Version] - Padmanabhan, T. Distribution Function of the Atoms of Spacetime and the Nature of Gravity. Entropy
**2015**, 17, 7420–7452. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bellucci, S.; Cardone, F.; Pistella, F. A New Insight on Physical Phenomenology: A Review. *Symmetry* **2021**, *13*, 607.
https://doi.org/10.3390/sym13040607

**AMA Style**

Bellucci S, Cardone F, Pistella F. A New Insight on Physical Phenomenology: A Review. *Symmetry*. 2021; 13(4):607.
https://doi.org/10.3390/sym13040607

**Chicago/Turabian Style**

Bellucci, Stefano, Fabio Cardone, and Fabio Pistella. 2021. "A New Insight on Physical Phenomenology: A Review" *Symmetry* 13, no. 4: 607.
https://doi.org/10.3390/sym13040607