# On the Dressed Photon Constant and Its Implication for a Novel Perspective on Cosmology

^{*}

## Abstract

**:**

## 1. Introduction

**Remark**

**1.**

**Thus, we show that macroscopic order parameters emerge naturally from the disjoint representations appearing in the micro systems and the spectrum of those order parameters gives the classification space for describing a variety of configurations the micro system would take**. The duality relation illustrated in the ordinate axis, that is, $[Dyn\leftrightarrows Spec]$ expresses the duality between invariability and variability of coupled micro and macro systems.

## 2. Augmented Maxwell’s Theory

#### 2.1. Clebsch Dual Field

- (i)
- in the above classical theory, the longitudinally propagating electric field can be reinterpreted as the null current vector ${\mathrm{\partial}}_{\mu}\varphi $$(\varphi :={\mathrm{\partial}}_{\nu}{A}^{\nu})$, and
- (ii)
- through a process similar to the analytic continuation in complex analysis, the electromagnetic field ${A}_{\mu}$ is extended to a CD field ${U}_{\mu}$. Via the Clebsch parameterization of ${U}_{\mu}$, ${A}_{\mu}$ is extended to the semi-spacelike momentum domain, which is regarded as the classical version of the $U(1)$ gauge boson as the mediator of the electromagnetic force. Thus, we can obtain a consistent picture of the classical electromagnetic longitudinal modes: the non-virtual one reported in [16,17] and the “virtual” one of the CD field.

#### 2.2. Quantization of the CD Field and DP Model

## 3. On Dark Energy and Dark Matter

## 4. Dressed Photon Constant and a New Version of CCC

#### 4.1. Dressed Photon Constant

#### 4.2. New Version of CCC

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ohtsu, M. Dressed Photons; Springer: Berlin, Germany, 2014; pp. 89–214. [Google Scholar]
- Sakuma, H.; Ojima, I.; Ohtsu, M.; Ochiai, H. Off-Shell Quantum Fields to Connect Dressed Photons with Cosmology. Symmetry
**2020**, 12, 1244. [Google Scholar] [CrossRef] - Ojima, I. Micro-Macro duality and emergence of macroscopic levels. Quantum Probab. White Noise Anal.
**2008**, 21, 217–228. [Google Scholar] - Jost, R. The General Theory of Quantized Fields; American Mathematical Society: Providence, RI, USA, 1963. [Google Scholar]
- Dell’Antonio, G.F. Support of a field in p space. J. Math. Phys.
**1961**, 2, 759–766. [Google Scholar] [CrossRef] - Mackey, G.W. A theorem of Stone and von Neumann. Duke Math. J.
**1949**, 16, 313–326. [Google Scholar] [CrossRef] - Ojima, I. A unified scheme for generalized sectors based on selection criteria–order parameters of symmetries and of thermal situations and physical meanings of classifying categorical adjunctions. Open Syst. Inf. Dyn.
**2003**, 10, 235–279. [Google Scholar] [CrossRef] [Green Version] - Streater, R.F.; Wightman, A.S. PCT, Spin and Statistics and All That; Benjamin, Inc.: Big Bear Lake, CA, USA, 1964. [Google Scholar]
- Sakuma, H.; Ojima, I.; Ohtsu, M. Dressed photons in a new paradigm of off-shell quantum fields. Progr. Quantum Electron.
**2017**, 55, 74–87. [Google Scholar] [CrossRef] - Sakuma, H.; Ojima, I.; Ohtsu, M. Gauge symmetry breaking and emergence of Clebsch-dual electromagnetic field as a model of dressed photons. Appl. Phys. A
**2017**, 123, 750. [Google Scholar] [CrossRef] - Sakuma, H. Virtual Photon Model by Spatio-Temporal Vortex Dynamics. In Progress in Nanophotonics; Yatsui, T., Ed.; Springer Nature: Cham, Switzerland, 2018; Volume 5, pp. 53–77. [Google Scholar]
- Ohtsu, M.; Ojima, I.; Sakuma, H. Progress in Optics; Chapter, 1; Visser, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 62, pp. 45–97. [Google Scholar]
- Huggett, S.A.; Tod, K.P. An Introduction to Twistor Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Penrose, R. Before the Big Bang: An outrageous new perspective and its implications for particle physics. Proc. EPAC. 2006. Available online: https://accelconf.web.cern.ch/e06/PAPERS/THESPA01.PDF (accessed on 1 January 2021).
- Petit, J.P. Twin Universes Cosmology. Astrophys. Space Sci.
**1995**, 226, 273–307. [Google Scholar] [CrossRef] [Green Version] - Lax, M.; Louisell, W.H.; McKnight, W.B. From Maxwell to paraxial optics. Phys. Rev. A
**1975**, 11, 1365–1370. [Google Scholar] [CrossRef] - Cicchitelli, L.; Hora, H.; Postle, R. Longitudinal field components for laser beams in vacuum. Phys. Rev. A
**1990**, 41, 3727–3732. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics, 2nd ed.; Volume 6 Fluid Mechanics; Elsevier: Oxford, UK, 1987. [Google Scholar]
- Lamb, S.H. Hydrodynamics, 6th ed.; Cambridge University Press: Cambridge, UK, 1930. [Google Scholar]
- Ojima, I. Nakanishi-Lautrup B-Field, Crossed Product & Duality. RIMS Kokyuroku
**2006**, 1524, 29–37. [Google Scholar] - Snyder, H.S. Quantized space-time. Phys. Rev.
**1947**, 71, 38. [Google Scholar] [CrossRef] - Girelli, F.; Livine, E.R.; Oriti, D. Deformed special relativity as an effective flat limit of quantum gravity. Nucl. Phys. B
**2005**, 708, 411–433. [Google Scholar] [CrossRef] [Green Version] - Kowalski-Glikman, J. Introduction to Doubly Special Relativity. arXiv
**2004**, arXiv:hep-th/0405273v1. [Google Scholar] - Ohtsu, M. History, current developments, and future directions of near-field optical science. Opto-Electron. Adv.
**2020**, 3, 190046. [Google Scholar] [CrossRef] [Green Version] - Aharonov, Y.; Komar, A.; Susskind, L. Superluminal behavior, causality, and instability. Phys. Rev.
**1969**, 182, 1400–1402. [Google Scholar] [CrossRef] - Kadowaki, T.; Kawazoe, T.; Ohtsu, M. SiC transmission-type polarization rotator using a large magneto-optical effect boosted and stabilized by dressed photons. Sci. Rep.
**2020**, 10, 12967. [Google Scholar] [CrossRef] - Hamano, M.; Saigo, H. Quantum walk and dressed photon. In Proceedings of the 9th International Conference on Quantum Simulation and Quantum Walks (QSQW 2020), Electronic Proceedings in Theoretical Computer Science 315, Marseille, France, 20–24 January 2020; pp. 93–99. [Google Scholar]
- Higuchi, Y.; Segawa, E. A dynamical system induced by quantum walk. J. Phys. A Math. Theor.
**2019**, 52, 39. [Google Scholar] [CrossRef] [Green Version] - Higuchi, Y.; Sabri, M.; Segawa, E. Electric Circuit Induced by Quantum Walk. J. Stat. Phys.
**2020**, 181, 603–617. [Google Scholar] [CrossRef] - Takesaki, M. Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math.
**1973**, 131, 249–310. [Google Scholar] [CrossRef] - Ojima, I. Gauge fields at finite temperatures—“Thermo Field Dynamics”and the KMS condition and their extension to gauge theories. Ann. Phys.
**1981**, 137, 1–32. [Google Scholar] [CrossRef] - Liu, H. What-Is-the-Best-Estimate-of-the-Cosmological-Constant. Available online: https://www.quora.com (accessed on 1 January 2021).
- Sakuma, H.; Ochiai, H. Note on the physical meaning of the cosmological term. OffShell: 1909O.001.v2. 2019. Available online: http://offshell.rodrep.org/?p=249 (accessed on 1 January 2021).
- Tod, P. The equation of CCC. arXiv
**2013**, arXiv:1309.7248. [Google Scholar] - Lübbe, C. Conformal scalar fields, isotropic singularities and conformal cyclic cosmology. arXiv
**2013**, arXiv:1312.2059. [Google Scholar] - Maldacena, J. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys.
**1998**, 2, 231–252. [Google Scholar] [CrossRef] - Verlinde, E. On the origin of gravity and the laws of Newton. High Energy Phys.
**2011**, 4, 29. [Google Scholar] [CrossRef] [Green Version] - Brouwer, M.M.; Visser, M.R.; Dvornik, A.; Hoekstra, H.; Kuijken, K.; Valentijn, E.A.; Bilicki, M.; Blake, C.; Brough, S.; Buddelmeijer, H.; et al. First test of Verlinde’s theory of Emergent Gravity using Weak Gravitationsl Lensing measurements. Mon. Not. R. Astron. Soc.
**2017**, 466, 2547–2559. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sakuma, H.; Ojima, I.
On the Dressed Photon Constant and Its Implication for a Novel Perspective on Cosmology. *Symmetry* **2021**, *13*, 593.
https://doi.org/10.3390/sym13040593

**AMA Style**

Sakuma H, Ojima I.
On the Dressed Photon Constant and Its Implication for a Novel Perspective on Cosmology. *Symmetry*. 2021; 13(4):593.
https://doi.org/10.3390/sym13040593

**Chicago/Turabian Style**

Sakuma, Hirofumi, and Izumi Ojima.
2021. "On the Dressed Photon Constant and Its Implication for a Novel Perspective on Cosmology" *Symmetry* 13, no. 4: 593.
https://doi.org/10.3390/sym13040593