Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces T1,1 and Yp,q
Abstract
:1. Introduction
2. Preliminaries
2.1. Sasaki Manifolds
2.2. Sasaki–Ricci Flow
3. Contact Hamiltonian Systems
4. Action–Angle Coordinates and Sasaki–Ricci Flow on Spaces and
4.1. Sasaki–Einstein Space
4.2. Sasaki–Ricci Space
5. Discussion
Funding
Conflicts of Interest
References
- Boyer, C.P.; Galicki, K. Sasakian Geometry; Oxford Mathematical Monographs; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Grmela, M. Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 2014, 16, 1652–1686. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A. Contact Hamiltonian dynamics: The concept and its use. Entropy 2017, 19, 535. [Google Scholar] [CrossRef]
- Sparks, J. Sasaki–Einstein manifolds. Surv. Diff. Geom. 2011, 16, 265–324. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Belova, O. On killing vector fields on Riemannian manifolds. Mathematics 2021, 9, 259. [Google Scholar] [CrossRef]
- Banyaga, A.; Molino, P. Géométrie des formes de contact complètement intégrables te type torique. In Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1991–1992 (Montpellier); Montpellier 2 University: Montpellier, France, 1993; pp. 1–25. [Google Scholar]
- Jovanović, B. Noncommutative integrability and action–angle variables in contact geometry. J. Symplectic Geom. 2012, 10, 535–561. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Cao, H.-D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 1985, 81, 359–372. [Google Scholar] [CrossRef]
- Smoczyk, K.; Wang, G.; Zhang, Y. The Sasaki–Ricci flow. Intern. J. Math. 2010, 21, 951–969. [Google Scholar] [CrossRef]
- Gauntlett, J.P.; Martelli, D.; Sparks, J.; Waldram, D. Sasaki–Einstein metrics on S2 × S3. Adv. Theor. Math. Phys. 2004, 8, 711–734. [Google Scholar] [CrossRef] [Green Version]
- Martelli, D.; Sparks, J. Toric geometry, Sasaki–Einstein manifolds and a new infinite class of AdS/CFT duals. Commun. Math. Phys. 2006, 262, 51–89. [Google Scholar] [CrossRef] [Green Version]
- Godliński, M.; Kopczyxnxski, W.; Nurowski, P. Locally Sasakian manifolds. Class. Quantum Grav. 2000, 17, L105–L115. [Google Scholar] [CrossRef]
- Futaki, A.; Ono, H.; Wang, G. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Diff. Geom. 2009, 83, 585–635. [Google Scholar] [CrossRef]
- Collins, T.C. Stability and convergence of the Sasaki–Ricci flow. J. Reine. Angew. Math. 2016, 714, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics. In Mathematics and its Applications; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1987; Volume 35. [Google Scholar]
- Boyer, C.P. Completely integrable contact Hamiltonian systems and toric contact structures on S2 × S3. SIGMA 2011, 7, 058. [Google Scholar] [CrossRef] [Green Version]
- Lerman, E. Contact toric manifolds. J. Symplectic Geom. 2003, 1, 785–828. [Google Scholar] [CrossRef] [Green Version]
- Geiges, H. Contact geometry. In Handbook of Differential Geometry; Dillen, J.J.E., Verstraelen, L.C.A., Eds.; North-Holland: Amsterdam, The Netherlands, 2006; Volume 2, pp. 315–382. [Google Scholar]
- Candelas, P.; de la Ossa, X.C. Comments on conifolds. Nucl. Phys. B 1990, 342, 246–268. [Google Scholar] [CrossRef]
- Banyaga, L. The geometry surrounding the Arnold-Liouville theorem. In Progress in Mathematics; Advances in Geometry; Brylinski, J.-L., Brylinski, R., Nistor, V., Tsygan, B., Xu, P., Eds.; Birkhäuser: Boston, MA, USA, 1999; Volume 172. [Google Scholar]
- Slesar, V.; Visinescu, M.; Vîlcu, G.E. Transverse Kähler–Ricci flow and deformations of the metric on the Sasaki space T1,1. Rom. Rep. Phys. 2020, 72, 108. [Google Scholar]
- Tachikawa, Y. AdS/CFT Correspondence with Eight Supercharges. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.713.6940&rep=rep1&type=pdf (accessed on 10 March 2021).
- Visinescu, M. Transverse Kähler–Ricci solitons of five-dimensional Sasaki–Einstein spaces Yp,q and T1,1. Symmetry 2020, 12, 330. [Google Scholar] [CrossRef] [Green Version]
- Visinescu, M. Sasaki–Ricci flow equation on five-dimensional space Yp,q. Mod. Phys. Lett. A 2020, 35, 2050114. [Google Scholar] [CrossRef] [Green Version]
- Slesar, V.; Visinescu, M.; Vîlcu, G.E. Toric data, Killing forms and complete integrability of geodesics in Sasaki–Einstein spaces Yp,q. Annals Phys. 2015, 361, 548–562. [Google Scholar] [CrossRef]
- Boyer, C.; Galicki, K. 3-Sasakian manifolds. Surv. Diff. Geom. 1999, 7, 123–184. [Google Scholar]
- Ianuş, S.; Visinescu, M.; Vîlcu, G.E. Conformal Killing-Yano tensors on manifolds with mixed 3-structures. SIGMA 2009, 5, 22. [Google Scholar]
- Wang, G.; Zhang, Y. The Sasaki–Ricci flow on Sasakian 3-spheres. Commun. Math. Stat. 2013, 1, 43–71. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visinescu, M. Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces T1,1 and Yp,q. Symmetry 2021, 13, 591. https://doi.org/10.3390/sym13040591
Visinescu M. Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces T1,1 and Yp,q. Symmetry. 2021; 13(4):591. https://doi.org/10.3390/sym13040591
Chicago/Turabian StyleVisinescu, Mihai. 2021. "Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces T1,1 and Yp,q" Symmetry 13, no. 4: 591. https://doi.org/10.3390/sym13040591
APA StyleVisinescu, M. (2021). Sasaki–Ricci Flow and Deformations of Contact Action–Angle Coordinates on Spaces T1,1 and Yp,q. Symmetry, 13(4), 591. https://doi.org/10.3390/sym13040591