Embedding Gauss–Bonnet Scalarization Models in Higher Dimensional Topological Theories
Abstract
:1. Introduction
2. HCS Gravity
3. The BH Solutions
3.1. Einstein-GB-Scalar Field BHs
3.1.1. Generic Solutions
3.1.2. Scalarized BHs
3.2. The Scalar-Vector Model: Perturbative Solutions
4. Further Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herdeiro, C.A.R.; Radu, E. Asymptotically flat black holes with scalar hair: A review. Int. J. Mod. Phys. D 2015, 24, 1542014. [Google Scholar] [CrossRef] [Green Version]
- Astefanesei, D.; Herdeiro, C.; Oliveira, J.; Radu, E. Higher dimensional black hole scalarization. J. High Energy Phys. 2020, 9, 186. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Herdeiro, C.A.R.; Kunz, J.; Pombo, A.M.; Radu, E. Einstein-Maxwell-scalar black holes: The hot, the cold and the bald. Phys. Lett. B 2020, 806, 135493. [Google Scholar] [CrossRef]
- Silva, H.O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T.P.; Berti, E. Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling. Phys. Rev. Lett. 2018, 120, 131104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doneva, D.D.; Yazadjiev, S.S. New Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. Lett. 2018, 120, 131103. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss–Bonnet Theories. Phys. Rev. Lett. 2018, 120, 131102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniou, G.; Bakopoulos, A.; Kanti, P. Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss–Bonnet Theories. Phys. Rev. D 2018, 97, 084037. [Google Scholar] [CrossRef] [Green Version]
- Minamitsuji, M.; Ikeda, T. Scalarized black holes in the presence of the coupling to Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 044017. [Google Scholar] [CrossRef] [Green Version]
- Brihaye, Y.; Ducobu, L. Hairy black holes, boson stars and non-minimal coupling to curvature invariants. Phys. Rev. B 2019, 795, 135–143. [Google Scholar] [CrossRef]
- Macedo, C.F.B.; Sakstein, J.; Berti, E.; Gualtieri, L.; Silva, H.O.; Sotiriou, T.P. Self-interactions and Spontaneous Black Hole Scalarization. Phys. Rev. D 2019, 99, 104041. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Staykov, K.V.; Yazadjiev, S.S. Gauss–Bonnet black holes with a massive scalar field. Phys. Rev. D 2019, 99, 104045. [Google Scholar] [CrossRef] [Green Version]
- Andreou, N.; Franchini, N.; Ventagli, G.; Sotiriou, T.P. Spontaneous scalarization in generalised scalar-tensor theory. Phys. Rev. D 2019, 99, 124022, Erratum in: Phys. Rev. D 2020, 101, 109903. [Google Scholar] [CrossRef] [Green Version]
- Minamitsuji, M.; Ikeda, T. Spontaneous scalarization of black holes in the Horndeski theory. Phys. Rev. D 2019, 99, 104069. [Google Scholar] [CrossRef] [Green Version]
- Blázquez-Salcedo, J.L.; Kahlen, S.; Kunz, J. Critical solutions of scalarized black holes. Symmetry 2020, 12, 2057. [Google Scholar] [CrossRef]
- Guo, H.; Kuang, X.M.; Papantonopoulos, E.; Wang, B. Topology and spacetime structure influences on black hole scalarization. arXiv 2020, arXiv:2012.11844. [Google Scholar]
- Bakopoulos, A.; Kanti, P.; Pappas, N. Large and ultracompact Gauss–Bonnet black holes with a self-interacting scalar field. Phys. Rev. D 2020, 101, 084059. [Google Scholar] [CrossRef]
- Peng, Y. Spontaneous scalarization of Gauss–Bonnet black holes surrounded by massive scalar fields. Phys. Rev. D 2020, 807, 135569. [Google Scholar] [CrossRef]
- Liu, H.S.; Lu, H.; Tang, Z.Y.; Wang, B. Black Hole Scalarization in Gauss–Bonnet Extended Starobinsky Gravity. arXiv 2020, arXiv:2004.14395. [Google Scholar]
- Cardoso, V.; Foschi, A.; Zilhao, M. Collective scalarization or tachyonization: When averaging fails. Phys. Rev. Lett. 2020, 124, 221104. [Google Scholar] [CrossRef] [PubMed]
- Ventagli, G.; Lehébel, A.; Sotiriou, T.P. Onset of spontaneous scalarization in generalized scalar-tensor theories. Phys. Rev. D 2020, 102, 024050. [Google Scholar] [CrossRef]
- Guo, H.; Kiorpelidi, S.; Kuang, X.M.; Papantonopoulos, E.; Wang, B.; Wu, J.P. Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss–Bonnet theories. Phys. Rev. D 2020, 102, 084029. [Google Scholar] [CrossRef]
- Doneva, D.D.; Staykov, K.V.; Yazadjiev, S.S.; Zheleva, R.Z. Multiscalar Gauss–Bonnet gravity: Hairy black holes and scalarization. Phys. Rev. D 2020, 102, 064042. [Google Scholar] [CrossRef]
- Heydari-Fard, M.; Sepangi, H.R. Thin accretion disk signatures of scalarized black holes in Einstein-scalar-Gauss–Bonnet gravity. arXiv 2020, arXiv:2009.13748. [Google Scholar]
- Bakopoulos, A. Black holes and wormholes in the Einstein-scalar-Gauss–Bonnet generalized theories of gravity. arXiv 2020, arXiv:2010.13189. [Google Scholar]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kunz, J.; Yazadjiev, S.S. Radial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2008, 98, 084011. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.O.; Macedo, C.F.B.; Sotiriou, T.P.; Gualtieri, L.; Sakstein, J.; Berti, E. Stability of scalarized black hole solutions in scalar-Gauss–Bonnet gravity. Phys. Rev. D 2019, 99, 064011. [Google Scholar] [CrossRef] [Green Version]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Axial perturbations of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2020, 101, 104006. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Doneva, D.D.; Kahlen, S.; Kunz, J.; Nedkova, P.; Yazadjiev, S.S. Polar quasinormal modes of the scalarized Einstein-Gauss–Bonnet black holes. Phys. Rev. D 2020, 102, 024086. [Google Scholar] [CrossRef]
- Hod, S. Spontaneous scalarization of Gauss–Bonnet black holes: Analytic treatment in the linearized regime. Phys. Rev. D 2019, 100, 064039. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Gauss–Bonnet black holes supporting massive scalar field configurations: The large-mass regime. Eur. Phys. J. C 2019, 79, 966. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zhidenko, A. Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows. Phys. Rev. D 2019, 100, 044015. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Onset of spontaneous scalarization in spinning Gauss–Bonnet black holes. Phys. Rev. D 2020, 102, 084060. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E. Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor–Gauss–Bonnet Gravity. Phys. Rev. D 2019, 123, 011101. [Google Scholar] [CrossRef] [Green Version]
- Collodel, L.G.; Kleihaus, B.; Kunz, J.; Berti, E. Spinning and excited black holes in Einstein-scalar-Gauss–Bonnet theory. Class. Quant. Grav. Phys. Rev. D 2020, 37, 075018. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Yazadjiev, S.S. On the dynamics of the nonrotating and rotating black hole scalarization. arXiv 2021, arXiv:2101.03514. [Google Scholar]
- Dima, A.; Barausse, E.; Franchini, N.; Sotiriou, T.P. Spin-induced black hole spontaneous scalarization. Phys. Rev. D 2020, 125, 231101. [Google Scholar]
- Herdeiro, C.A.R.; Radu, E.; Silva, H.O.; Sotiriou, T.P.; Yunes, N. Spin-induced scalarized black holes. Phys. Rev. Lett. 2021, 126, 011103. [Google Scholar] [CrossRef]
- Berti, E.; Collodel, L.G.; Kleihaus, B.; Kunz, J. Spin-induced black-hole scalarization in Einstein-scalar-Gauss–Bonnet theory. Phys. Rev. Lett. 2021, 126, 011104. [Google Scholar] [CrossRef]
- Doneva, D.D.; Collodel, L.G.; Krüger, C.J.; Yazadjiev, S.S. Black hole scalarization induced by the spin: 2+1 time evolution. Phys. Rev. D 2020, 102, 104027. [Google Scholar] [CrossRef]
- Buonanno, A.; Gasperini, M.; Ungarelli, C. A class of nonsingular gravidilaton backgrounds. Mod. Phys. Lett. A 1997, 12, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- Tchrakian, D.H. Chern–Simons Gravities (CSG) and Gravitational Chern–Simons (GCS) Densities in All Dimensions. Phys. Atom. Nucl. 2018, 81, 930. [Google Scholar] [CrossRef] [Green Version]
- Radu, E.; Tchrakian, D.H. Gravitational Chern–Simons, and Chern–Simons Gravity in All Dimensions. Phys. Part. Nucl. Lett. 2020, 17, 753–759. [Google Scholar] [CrossRef]
- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956, 101, 1597–1607. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 1988, 311, 46. [Google Scholar] [CrossRef]
- Chamseddine, A.H. Topological Gauge Theory of Gravity in Five-dimensions and All Odd Dimensions. Phys. Lett. B 1989, 233, 291. [Google Scholar] [CrossRef]
- Chamseddine, A.H. Topological gravity and supergravity in various dimensions. Nucl. Phys. B 1990, 346, 213. [Google Scholar] [CrossRef]
- Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Ann. Phys. 1982, 140, 372, reprinted in Ann. Phys. 1988, 185, 406; reprinted in Ann. Phys. 2000, 281, 409. [Google Scholar] [CrossRef]
- Tchrakian, T. Notes on Yang–Mills-Higgs monopoles and dyons on Rsup D, and Chern–Simons-Higgs solitons on Rsup D-2: Dimensional reduction of Chern–Pontryagin densities. J. Phys. A 2011, 44, 343001. [Google Scholar] [CrossRef] [Green Version]
- Radu, E.; Tchrakian, T. New Chern–Simons densities in both odd and even dimensions. arXiv 2011, arXiv:1101.5068. [Google Scholar]
- Tchrakian, D.H. Higgs-and Skyrme-Chern–Simons densities in all dimensions. J. Phys. A 2015, 48, 375401. [Google Scholar] [CrossRef] [Green Version]
- Tchrakian, D.H. A remark on black holes of Chern–Simons gravities in 2n + 1 dimensions: n = 1, 2, 3. Int. J. Mod. Phys. A 2020, 35, 2050022. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.F.M.; Herdeiro, C.A.R.; Radu, E. Spinning black holes in shift-symmetric Horndeski theory. J. High Energy Phys. 2020, 4, 180. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity. Phys. Rev. Lett. 2014, 112, 251102. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. D 2014, 90, 124063. [Google Scholar] [CrossRef] [Green Version]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, 3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, S.; Hartmann, B.; Kleihaus, B.; Kunz, J. Spontaneously vectorized Einstein-Gauss–Bonnet black holes. arXiv 2021, arXiv:2103.0165. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herdeiro, C.; Radu, E.; Tchrakian, D.H. Embedding Gauss–Bonnet Scalarization Models in Higher Dimensional Topological Theories. Symmetry 2021, 13, 590. https://doi.org/10.3390/sym13040590
Herdeiro C, Radu E, Tchrakian DH. Embedding Gauss–Bonnet Scalarization Models in Higher Dimensional Topological Theories. Symmetry. 2021; 13(4):590. https://doi.org/10.3390/sym13040590
Chicago/Turabian StyleHerdeiro, Carlos, Eugen Radu, and D. H. Tchrakian. 2021. "Embedding Gauss–Bonnet Scalarization Models in Higher Dimensional Topological Theories" Symmetry 13, no. 4: 590. https://doi.org/10.3390/sym13040590