An Improved Estimation Method of Mutual Inductance Angle for a Two-Dimensional Wireless Power Transfer System
Abstract
:1. Introduction
2. 2D WPT System
2.1. Structure of Coils
2.2. Coupled Circuit Model
2.3. Power Transmission Efficiency (PTE) and Mutual Inductance Angle
3. Estimation of Mutual Inductance Angle
3.1. Structure Od Proposed Estimator
3.2. Design of Proposed Estimator
4. Simulation and Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, W.M.; Zhang, C.; Lin, D.; Hui, S.Y. Two- and Three-Dimensional Omnidirectional Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 4470–4474. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huang, X.; Wang, W. Wireless Power Transfer with Two-Dimensional Resonators. IEEE Trans. Magn. 2014, 50, 4002804. [Google Scholar] [CrossRef]
- Chabalko, M.J.; Sample, A.P. Three-Dimensional Charging via Multimode Resonant Cavity Enabled Wireless Power Transfer. IEEE Trans. Power Electron. 2015, 30, 6163–6173. [Google Scholar] [CrossRef]
- Lin, D.; Hui, S.Y.; Zhang, C. Omni-directional wireless power transfer systems using discrete magnetic field vector control. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 3203–3208. [Google Scholar]
- Lin, D.; Zhang, C.; Hui, S.Y. Mathematical Analysis of Omnidirectional Wireless Power Transfer—Part-I: Two-Dimensional Systems. IEEE Trans. Power Electron. 2017, 32, 625–633. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, C.; Hui, S.Y. Mathematical Analysis of Omnidirectional Wireless Power Transfer—Part-II: Three-Dimensional Systems. IEEE Trans. Power Electron. 2017, 32, 613–624. [Google Scholar] [CrossRef]
- Guo, T.; Seol, W.K.; Chung, S.K. Estimation of Mutual Inductance Angle for 2-D Wireless Transfer System. In Proceedings of the 2017 Korea Institute of Power Electronics Fall Conference, Gyeongbuk, Korea, 4–6 July 2017; pp. 49–50. [Google Scholar]
- Sasaki, M.; Yamamoto, M. Exciting voltage control for transfer efficiency maximization for multiple wireless power transfer systems. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 5523–5528. [Google Scholar]
- Seol, W.K.; Chung, S.K. Current Vector Control of Wireless Power Transfer System with 2D Transmitting Coils. Electron. Lett. 2018, 54, 91–92. [Google Scholar] [CrossRef]
- Su, M.; Liu, Z.; Zhu, Q.; Hu, A.P. Study of Maximum Power Delivery to Movable Device in Omnidirectional Wireless Power Transfer System. IEEE Access 2018, 6, 76153–76164. [Google Scholar] [CrossRef]
- Sergkei, K.; Lombard, P.; Semet, V.; Allard, B.; Moguedet, M.; Cabrera, M. Omni-directional Inductive Wireless Power Transfer with 3D MID inductor. In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 154–157. [Google Scholar]
- Li, J.; Yang, Y.; Yan, H.; Liu, C.; Dong, L.; Wang, G. Quasi-Omnidirectional Wireless Power Transfer for a Sensor System. IEEE Sens. J. 2020, 20, 6148–6159. [Google Scholar] [CrossRef]
- Chung, S.K. A Phase Tracking System for Three Phase Utility Interface Inverters. IEEE Trans. Power Electron. 2000, 15, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Boyes, G. Synchro and Resolver Conversion; Analog Devices Inc.: Norwood, MA, USA, 1980. [Google Scholar]
- Gardner, F.M. Phaselock Techniques, 3rd ed.; Wiely: Hoboken, NJ, USA, 2005. [Google Scholar]
Item | Value | Item | Value |
---|---|---|---|
a | 10 cm | b | 4 cm |
R | 0.42 Ω | Rr | 0.26 Ω |
L | 9 uH | Lr | 4.4 uH |
C | 10 nF | Cr | 20 nF |
f | 530 kHz | RL | 10 Ω |
φ (deg) | d = 0 cm | d = 2 cm | ||||
---|---|---|---|---|---|---|
Mαr (uH) | Mβr (uH) | γ (deg) | Mαr (uH) | Mβr (uH) | γ (deg) | |
0 | 1.777 | 0.003 | 0.09 | 1.085 | 0.004 | 0.21 |
15 | 1.602 | 0.327 | 11.54 | 1.179 | 0.517 | 23.68 |
30 | 1.308 | 0.655 | 26.60 | 1.267 | 0.925 | 36.13 |
45 | 1.008 | 1.008 | 45 | 1.407 | 1.407 | 45 |
60 | 0.655 | 1.308 | 63.40 | 0.925 | 1.267 | 53.87 |
75 | 0.327 | 1.602 | 78.46 | 0.517 | 1.179 | 66.32 |
90 | 0.003 | 1.777 | 89.90 | 0.004 | 1.085 | 89.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, J.; Kwon, J.; Chung, S.-K. An Improved Estimation Method of Mutual Inductance Angle for a Two-Dimensional Wireless Power Transfer System. Symmetry 2021, 13, 448. https://doi.org/10.3390/sym13030448
Lee S, Lee J, Kwon J, Chung S-K. An Improved Estimation Method of Mutual Inductance Angle for a Two-Dimensional Wireless Power Transfer System. Symmetry. 2021; 13(3):448. https://doi.org/10.3390/sym13030448
Chicago/Turabian StyleLee, Sangyong, Jeonho Lee, Jongkyum Kwon, and Se-Kyo Chung. 2021. "An Improved Estimation Method of Mutual Inductance Angle for a Two-Dimensional Wireless Power Transfer System" Symmetry 13, no. 3: 448. https://doi.org/10.3390/sym13030448