An Existence Result for a Class of p(x)—Anisotropic Type Equations
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Proofs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alvino, A.; Ferone, V.; Trombetti, G.; Lions, P.-L. Convex symmetrization and applications. Ann. Inst. Henri Poincaré C Anal. Non Linéaire 1997, 14, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Boureanu, M.M.; Pucci, P.; Radulescu, V.D. Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponenty. Complex Var. Elliptic Eq. 2011, 56, 755–767. [Google Scholar] [CrossRef]
- Boureanu, M.-M. Critical Point Methods in Degenerate Anisotropic Problems with Variable Exponent. Master Thesis, Studia Universitatis, Babes Bolyai, Mathematica, 2010; pp. 27–39. [Google Scholar]
- Chung, N.T.; Toan, H.Q. On a class of anisotropic elliptic equations without Ambrosetti-Rabinowitz type conditions. Nonlinear Anal. Real World Appl. 2014, 16, 132–145. [Google Scholar] [CrossRef]
- Cianchi, A.; Salani, P. Overdetermined anisotropic elliptic problems. Math. Ann. 2009, 345, 859–881. [Google Scholar] [CrossRef]
- Dumitru, D.S. Multiplicity of solutions for a nonlinear degenerate problem in anisotropic variable exponent spaces. Bull. Malays. Math. Sci. Soc. 2013, 36, 117–130. [Google Scholar]
- Pietra, F.D.; Gavitone, N. Symmetrization for Neumann anisotropic problems and related questions. Adv. Nonlinear Stud. 2012, 12, 219–235. [Google Scholar] [CrossRef]
- Hamidi, A.E.; Rakotoson, J.M. Extremal functions for the anisotropic Sobolev inequalities. Ann. L’Inst. Henri Poincaré C Non Linear Anal. 2006, 24, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Fragalà, I.; Gazzola, F.; Kawohl, B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2004, 21, 715–734. [Google Scholar] [CrossRef]
- Ourraoui, A. On a (x)−Anisotropic problems with Neumann boundary conditions. Int. J. Differ. Eq. 2015, 2015, 238261. [Google Scholar] [CrossRef] [Green Version]
- Ourraoui, A. On a nonlocal (.)−Laplacian equations via genus theory. Riv Mat. Univ. Parma 2015, 6, 305–316. [Google Scholar]
- Ragusa, M.A.; Tachikawa, A. Boundary regularity of minimizers of p(x)-energy functionals. Ann. L’Inst. Poincaré Anal. Non Lineaire 2016, 33, 451–476. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Stancut, I.L. Spectrum for anisotropic equations involving weights and variable exponents. Electron. J. Differ. Eq. 2014, 2014, 1–16. [Google Scholar]
- Yu, M.; Wang, L.; Tang, S. Existence of solutions for an anisotropic elliptic problem with variable exponent and singularity. Math. Methods Appl. Sci. 2016, 39, 2761–2767. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Tschumperlé, D.; Deriche, R. Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing: Framework and Applications. Adv. Imaging Electron Phys. (AIEP) 2007, 145, 145–209. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer Science: Berlin/Heidelberg, Germany, 2001; 517p. [Google Scholar]
- Fan, X. Anisotropic variable exponent Sobolev spaces and (.)-Laplacian equations. Complex Var. Elliptic Eq. 2011, 56, 623–642. [Google Scholar] [CrossRef]
- Mihailescu, M.; Pucci, P.; Radulescu, V. Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 2007, 345, 561–566. [Google Scholar] [CrossRef]
- Li, G.; Zhou, H.S. Dirichlet Problem of p-Laplacian with Nonlinear Term f(x,u)∼up-1 at Infinity, Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations; International Press: Somerville, MA, USA, 2003; pp. 77–89. [Google Scholar]
- Allaoui, M.; Ourraoui, A. Existence Results for a Class of p(x)−Kirchhoff Problem with a Singular Weight. Mediterr. J. Math. 2016, 13, 677–686. [Google Scholar] [CrossRef]
- Edmunds, D.E.; R’akosnık, J. Sobolev embedding with variable exponent. Stud. Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Schechter, M. A variation of the mountain pass lemma and applications. J. Lond. Math. Soc. 1991, 44, 491–502. [Google Scholar] [CrossRef]
- Bonzi, B.K.; Ouaro, S.; Zongo, F.D.Y. Entropy Solutions for Nonlinear Elliptic Anisotropic Homogeneous Neumann Problem. Int. J. Differ. Equations 2013, 2013, 476781. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ourraoui, A.; Ragusa, M.A. An Existence Result for a Class of p(x)—Anisotropic Type Equations. Symmetry 2021, 13, 633. https://doi.org/10.3390/sym13040633
Ourraoui A, Ragusa MA. An Existence Result for a Class of p(x)—Anisotropic Type Equations. Symmetry. 2021; 13(4):633. https://doi.org/10.3390/sym13040633
Chicago/Turabian StyleOurraoui, Anass, and Maria Alessandra Ragusa. 2021. "An Existence Result for a Class of p(x)—Anisotropic Type Equations" Symmetry 13, no. 4: 633. https://doi.org/10.3390/sym13040633
APA StyleOurraoui, A., & Ragusa, M. A. (2021). An Existence Result for a Class of p(x)—Anisotropic Type Equations. Symmetry, 13(4), 633. https://doi.org/10.3390/sym13040633