A Dynamic Distance Measure of Picture Fuzzy Sets and Its Application
Abstract
:1. Introduction
2. Preliminaries
3. Picture Fuzzy Point Operator
4. Distance Measure Based on the Picture Fuzzy Point Operator
Distance between Picture Fuzzy Sets
5. Experiments and Analysis
5.1. Numerical Comparisons of Some Distance Measures
- (i)
- The distance measures cannot recognize the difference between and in the first column and the second column, since the distance between and is equal the distance between and under .
- (ii)
- The distance measures have counterintuitive situations by analyzing the third column and the fourth column. Although the distance measures and can recognize the difference between and , the results are not unreasonable because .
- (iii)
- By analyzing the fifth column and the sixth column, we find that the distance measures have counterintuitive situations.
- (iv)
- By looking at the second column, we find that the distance measure produces an undefined situation.
- (v)
- Nevertheless, when we compare the distance measure results of the first and second columns or the third and fourth columns or the fifth and sixth columns, the proposed distance measure is more effective than some other distance measures at distinguishing the differences between PFSs.
5.2. Algorithm and Applications
Algorithm for Multi-Attribute Decision-Making
5.3. Applications to Multi-Attribute Decision-Making
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dheena, P.; Mohanraj, G. Multicriteria decision-making combining fuzzy set theory, ideal and anti-ideal points for location site selection. Expert Syst. Appl. 2011, 38, 13260–13265. [Google Scholar] [CrossRef]
- Versaci, M.; Morabito, F.C. Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 2021, 1–19. [Google Scholar] [CrossRef]
- Dev, U.; Sultana, A.; Mitra, N.K. Fuzzy Set Theory in Real-World Knowledge and Medical Diagnosis Process. J. Phys. Sci. 2015, 20, 7–18. [Google Scholar]
- Adlassnig, K.P. Fuzzy Set Theory in Medical Diagnosis. IEEE Trans. Syst. Man Cybern. 1986, 16, 260–265. [Google Scholar] [CrossRef]
- Deng, X.F.; Yao, Y.Y. Decision-theoretic three-way approximations of fuzzy sets. Inf. Sci. 2014, 279, 702–715. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Wang, S.; Deng, X.F. Constructing shadowed sets and three-way approximations of fuzzy sets. Inf. Sci. 2017, 412, 132–153. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Boran, F.E.; Akay, D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inf. Sci. 2014, 255, 45–57. [Google Scholar] [CrossRef]
- Hwang, C.M.; Yang, M.S.; Hung, W.L. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Inf. Sci. 2012, 189, 93–109. [Google Scholar] [CrossRef]
- Mitchell, H.B. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recognit. Lett. 2003, 24, 3101–3104. [Google Scholar] [CrossRef]
- Quan, S.Y. Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 2005, 26, 2063–2069. [Google Scholar] [CrossRef]
- Garg, H.; Kumar, K. Some Aggregation Operators for Linguistic Intuitionistic Fuzzy Set and its Application to Group Decision-Making Process Using the Set Pair Analysis. Arab. J. Sci. Eng. 2018, 1. [Google Scholar] [CrossRef]
- Husain, S.; Ahmad, Y.; Alam, M.A. A study on the Role of Intuitionistic Fuzzy Set in Decision making problems. Int. J. Comput. Appl. 2012, 48, 35–41. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Xu, Z.S.; Yager, R.R. Dynamic intuitionistic fuzzy multi-attribute decision making. Int. J. Approx. Reason. 2008, 48, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, J.M.; Yao, Y.Y. Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problems. Inf. Sci. 2020, 517, 315–339. [Google Scholar] [CrossRef]
- De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001, 117, 209–213. [Google Scholar] [CrossRef]
- Luo, M.X.; Zhao, R.R. A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis. Artif. Intell. Med. 2018, 89, 34–39. [Google Scholar] [CrossRef]
- Muthukumar, P.; Krishnan, G.S.S. A Similarity Measure of Intuitionistic Fuzzy Soft Sets and its Application in Medical Diagnosis. Appl. Soft Comput. 2016, 41, 148–156. [Google Scholar] [CrossRef]
- Son, H.L. Generalized picture distance measure and applications to picture fuzzy clustering. Appl. Soft Comput. 2016, 46, 284–295. [Google Scholar] [CrossRef]
- Cuong, B.C.; Kreinovich, V. Picture fuzzy sets-A new concept for computational intelligence problems. In Proceedings of the 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 15–18 December 2013; pp. 1–6. [Google Scholar]
- Dinh, N.V.; Thao, N.X. Some measures of picture fuzzy sets and their application in multi-attribute decision making. Int. J. Math. Sci. Comput. 2018, 3, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mishra, N.K.; Kumar, M.; Saxena, S.; Singh, V. Risk analysis of flood disaster based on similarity measures in picture fuzzy environment. Afr. Mater. 2018, 29, 1019–1038. [Google Scholar] [CrossRef]
- Wei, G.W. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 2017, 28, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Palash, D. Medical diagnosis via distance measures on picture fuzzy sets. Amse J.-Amse Iieta 2017, 54, 137–152. [Google Scholar]
- Cuong, B. Picture fuzzy sets-first results. part 1, In Seminar Neuro-Fuzzy Systems with Applications; Institute of Mathematics: Bhubaneswar, India, 2013. [Google Scholar]
- Wei, G.W. Some similarity measures for picture fuzzy sets and their application. Iran. J. Fuzzy Syst. 2018, 15, 77–89. [Google Scholar] [CrossRef]
- Liu, H.W.; Wang, G.J. Multi-criteria decision-making methods based on intuitionisic fuzzy sets. Eur. J. Oper. Res. 2017, 179, 220–233. [Google Scholar] [CrossRef]
- Hatzimichailidis, A.G.; Papakostas, G.A.; Kaburlasos, V.G. A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems. Int. J. Intell. Syst. 2012, 27, 396–409. [Google Scholar] [CrossRef]
- Jana, C.; Senapati, T.; Pal, M.; Yager, R. Picture fuzzy Dombi aggregation operators: Application to MADM process. Appl. Soft Comput. J. 2018, 74, 99–109. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 2016, 17, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zeng, S.; Baležentis, T.; Streimikiene, D. Picture Fuzzy Weighted Distance Measures and their Application to Investment Selection. Amfiteatru Econ. 2019, 21, 682–695. [Google Scholar] [CrossRef]
- Khan, S.; Abdullah, S.; Ashraf, S. Picture fuzzy aggregation information based on Einstein operations and their application in decision making. Math. Sci. 2019, 13, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
[23] | 0.3333 | 0.3333 | 0.2333 | 0.1333 | 0.3333 | 0.3333 |
[23] | 0.2357 | 0.2357 | 0.1667 | 0.1333 | 0.3333 | 0.3333 |
[23] | 0.5000 | 0.5000 | 0.4000 | 0.4000 | 0.1000 | 0.1000 |
[23] | 0.2500 | 0.2500 | 0.1600 | 0.1600 | 0.0100 | 0.0100 |
[25] | 0.2927 | 0.2929 | 0.1910 | 0.1910 | 0.0123 | 0.0123 |
[25] | 0.3727 | 0.3727 | 0.2352 | 0.0789 | 0.0050 | 0.0050 |
[25] | 0.2929 | 1.0000 | 0.1910 | 0.1910 | 0.0123 | 0.0123 |
[25] | 0.0192 | 0.2929 | 0.0079 | 0.0079 | 0.0001 | 0.0001 |
[25] | 0.5858 | 0.5858 | 0.4905 | 0.4905 | 0.1459 | 0.1459 |
[25] | 0.5858 | 1.0000 | 0.4905 | 0.4905 | 0.1459 | 0.1459 |
[24] | 0.2500 | 0.5000 | 0.2000 | 0.2000 | 0.0500 | 0.0500 |
[24] | 0.3536 | 0.3536 | 0.2540 | 0.2000 | 0.0500 | 0.0502 |
[24] | 0.1250 | 0.2500 | 0.1000 | 0.1000 | 0.0250 | 0.0250 |
[24] | 0.2500 | 0.5000 | 0.2000 | 0.2000 | 0.0500 | 0.0500 |
[28] | 0.2500 | NaN | 0.4756 | 0.4220 | 0.0441 | 0.0510 |
[21] | 0.2174 | 0.2941 | 0.2235 | 0.2192 | 0.0412 | 0.0412 |
[21] | 0.3134 | 0.3923 | 0.3314 | 0.3625 | 0.0712 | 0.0712 |
[26] | 0.2174 | 0.2941 | 0.2235 | 0.2192 | 0.0412 | 0.0412 |
[26] | 0.2110 | 0.2440 | 0.2096 | 0.2197 | 0.0444 | 0.0444 |
0.4082 | 0.1826 | 0.2846 | 0.2191 | 0.0548 | 0.0606 | |
0.4082 | 0.1751 | 0.2842 | 0.2253 | 0.0563 | 0.0630 | |
0.4082 | 0.1763 | 0.2841 | 0.2269 | 0.0567 | 0.0636 | |
0.4082 | 0.1768 | 0.2841 | 0.2273 | 0.0568 | 0.0637 |
S | Results of Distance Measures | Decision-Making | |||||
---|---|---|---|---|---|---|---|
Ranking | Result | ||||||
[23] | 0.0444 | 0.0444 | 0.0333 | 0.0333 | No | No | |
[23] | 0.0703 | 0.0703 | 0.0609 | 0.0609 | No | No | |
[23] | 0.1333 | 0.1333 | 0.1000 | 0.1000 | No | No | |
[23] | 0.2108 | 0.2108 | 0.1826 | 0.1826 | No | No | |
[25] | 0.1000 | 0.1000 | 0.1000 | 0.1000 | No | No | |
[25] | 0.0062 | 0.0102 | 0.0051 | 0.0031 | 0.0122 | ||
[25] | 0.0245 | 0.0245 | 0.0245 | 0.0245 | No | No | |
[25] | 0.0143 | 0.0143 | 0.0143 | 0.0143 | No | No | |
[25] | 0.1459 | 0.0973 | 0.0973 | 0.1459 | No | No | |
[25] | 0.1884 | 0.1884 | 0.1884 | 0.1884 | No | No | |
[24] | 0.0500 | 0.0500 | 0.0500 | 0.0500 | No | No | |
[24] | 0.0816 | 0.0816 | 0.0816 | 0.0816 | No | No | |
[24] | 0.0333 | 0.0333 | 0.0333 | 0.0333 | No | No | |
[24] | 0.0050 | 0.0041 | 0.0041 | 0.0041 | No | No | |
[28] | 0.4200 | 0.4200 | 0.4200 | 0.4200 | No | No | |
[21] | 0.0792 | 0.0792 | 0.0597 | 0.0597 | No | No | |
[26] | 0.0792 | 0.0792 | 0.0597 | 0.0597 | No | No | |
0.3598 | 0.3575 | 0.3516 | 0.3396 | 0.0501 |
S | Results of Distance Measures | Decision-Making | ||||||
---|---|---|---|---|---|---|---|---|
Ranking | Results | |||||||
[23] | 0.1742 | 0.2325 | 0.1683 | 0.2275 | 0.2208 | No | ||
[23] | 0.0844 | 0.0989 | 0.0861 | 0.0980 | 0.0940 | 0.0396 | ||
[23] | 0.2775 | 0.3800 | 0.3650 | 0.3775 | 0.3675 | 0.3800 | ||
[23] | 0.1845 | 0.2380 | 0.2418 | 0.2252 | 0.2191 | 0.1861 | ||
[25] | 0.1600 | 0.2500 | 0.2600 | 0.2300 | 0.2200 | 0.3200 | ||
[25] | 0.1514 | 0.2302 | 0.1198 | 0.2010 | 0.1902 | No | ||
[25] | 0.1563 | 0.2515 | 0.2575 | 0.2314 | 0.2212 | 0.3364 | ||
[25] | 0.1622 | 0.2714 | 0.2721 | 0.2383 | 0.2415 | 0.3745 | ||
[25] | 0.3314 | 0.4370 | 0.4122 | 0.4415 | 0.4303 | 0.3954 | ||
[25] | 0.3314 | 0.4370 | 0.4122 | 0.4415 | 0.4303 | 0.4064 | ||
[24] | 0.1425 | 0.1988 | 0.1925 | 0.1913 | 0.1750 | 0.1876 | ||
[24] | 0.2556 | 0.3026 | 0.3249 | 0.2983 | 0.2828 | 0.1859 | ||
[24] | 0.0694 | 0.0950 | 0.0913 | 0.0944 | 0.0938 | 0.0969 | ||
[24] | 0.1088 | 0.1712 | 0.2000 | 0.1393 | 0.1269 | 0.2022 | ||
[28] | 0.4400 | 0.4400 | 0.4300 | 0.4400 | 0.4300 | No | No | |
[21] | 0.1072 | 0.1343 | 0.1121 | 0.1221 | 0.1192 | 0.0589 | ||
[26] | 0.1072 | 0.1343 | 0.1121 | 0.1221 | 0.1192 | 0.0589 | ||
0.3608 | 0.5303 | 0.4076 | 0.4325 | 0.4260 | 0.3532 |
Ranking Order | |||||||
---|---|---|---|---|---|---|---|
p = 1 | m = 0 | 0.1308 | 0.1462 | 0.2062 | 0.2059 | 0.1860 | |
m = 1 | 0.1271 | 0.1481 | 0.2049 | 0.2047 | 0.1890 | ||
m = 2 | 0.1240 | 0.1484 | 0.2022 | 0.2040 | 0.1874 | ||
m = 3 | 0.1216 | 0.1485 | 0.1989 | 0.2036 | 0.1855 | ||
m = 4 | 0.1198 | 0.1480 | 0.1960 | 0.2035 | 0.1831 | ||
m = 5 | 0.1183 | 0.1471 | 0.1936 | 0.2035 | 0.1805 | ||
m = 6 | 0.1170 | 0.1464 | 0.1916 | 0.2036 | 0.1784 | ||
m = 10 | 0.1138 | 0.1441 | 0.1860 | 0.2020 | 0.1728 | ||
m = 20 | 0.1110 | 0.1417 | 0.1808 | 0.1969 | 0.1682 | ||
m = ∞ | 0.1102 | 0.1408 | 0.1790 | 0.1954 | 0.1668 | ||
p = 2 | m = 0 | 0.3466 | 0.3711 | 0.4497 | 0.4405 | 0.4205 | |
m = 1 | 0.3520 | 0.3762 | 0.4506 | 0.4469 | 0.4254 | ||
m = 2 | 0.3552 | 0.3804 | 0.4506 | 0.4511 | 0.4282 | ||
m = 3 | 0.3564 | 0.3833 | 0.4497 | 0.4535 | 0.4293 | ||
m = 4 | 0.3564 | 0.3852 | 0.4482 | 0.4546 | 0.4292 | ||
m = 5 | 0.3556 | 0.3863 | 0.4464 | 0.4548 | 0.4284 | ||
m = 6 | 0.3543 | 0.3868 | 0.4443 | 0.4544 | 0.4273 | ||
m = 10 | 0.3486 | 0.3857 | 0.4369 | 0.4513 | 0.4224 | ||
m = 20 | 0.3415 | 0.3816 | 0.4277 | 0.4463 | 0.4161 | ||
m = ∞ | 0.3394 | 0.3794 | 0.4244 | 0.4444 | 0.4139 | ||
p = 3 | m = 0 | 0.4877 | 0.5130 | 0.5870 | 0.5742 | 0.5572 | |
m = 1 | 0.4944 | 0.5179 | 0.5875 | 0.5809 | 0.5619 | ||
m = 2 | 0.4997 | 0.5225 | 0.5880 | 0.5859 | 0.5657 | ||
m = 3 | 0.5033 | 0.5265 | 0.5882 | 0.5892 | 0.5682 | ||
m = 4 | 0.5053 | 0.5296 | 0.5878 | 0.5908 | 0.5695 | ||
m = 5 | 0.5059 | 0.5318 | 0.5869 | 0.5914 | 0.5696 | ||
m = 6 | 0.5054 | 0.5330 | 0.5856 | 0.5913 | 0.5691 | ||
m = 10 | 0.5000 | 0.5329 | 0.5789 | 0.5889 | 0.5648 | ||
m = 20 | 0.4914 | 0.5281 | 0.5691 | 0.5847 | 0.5584 | ||
m = ∞ | 0.4889 | 0.5256 | 0.5656 | 0.5831 | 0.5561 | ||
p = 4 | m = 0 | 0.5813 | 0.6051 | 0.6710 | 0.6575 | 0.6432 | |
m = 1 | 0.5876 | 0.6093 | 0.6713 | 0.6635 | 0.6475 | ||
m = 2 | 0.5929 | 0.6135 | 0.6717 | 0.6683 | 0.6511 | ||
m = 3 | 0.5971 | 0.6173 | 0.6721 | 0.6715 | 0.6540 | ||
m = 4 | 0.5999 | 0.6174 | 0.6669 | 0.6740 | 0.6593 | ||
m = 5 | 0.6014 | 0.6233 | 0.6719 | 0.6739 | 0.6564 | ||
m = 6 | 0.6017 | 0.6250 | 0.6711 | 0.6741 | 0.6562 | ||
m = 10 | 0.5970 | 0.6254 | 0.6654 | 0.6724 | 0.6521 | ||
m = 20 | 0.5883 | 0.6203 | 0.6561 | 0.6688 | 0.6458 | ||
m = ∞ | 0.5857 | 0.6179 | 0.6528 | 0.6674 | 0.6436 | ||
p = 5 | m = 0 | 0.6467 | 0.6687 | 0.7271 | 0.7138 | 0.7018 | |
m = 1 | 0.6524 | 0.6724 | 0.7273 | 0.7192 | 0.7056 | ||
m = 2 | 0.6574 | 0.6760 | 0.7276 | 0.7236 | 0.7089 | ||
m = 3 | 0.6614 | 0.6795 | 0.7279 | 0.7264 | 0.7117 | ||
m = 4 | 0.6645 | 0.6827 | 0.7282 | 0.7280 | 0.7136 | ||
m = 5 | 0.6664 | 0.6853 | 0.7282 | 0.7288 | 0.7145 | ||
m = 6 | 0.6671 | 0.6872 | 0.7277 | 0.7291 | 0.7144 | ||
m = 10 | 0.66633 | 0.6880 | 0.7230 | 0.7281 | 0.7106 | ||
m = 20 | 0.6549 | 0.6829 | 0.7143 | 0.7249 | 0.7045 | ||
m = ∞ | 0.6525 | 0.6807 | 0.7113 | 0.7236 | 0.7024 |
Reference | Methods | Parameter Value | Ranking Order |
---|---|---|---|
p = 1 | |||
p = 2 | |||
Jana et al. [31] | Dombi aggregation operators | p = 3 | |
p = 4 | |||
p = 5 | |||
Wei [32] | Cross-entropy | ∖ | |
Wei [35] | Weighted geometric operator | ∖ | |
Khan et al. [34] | Einstein weighted averaging operator | ∖ | |
Liu et al. [33] | Hybrid weighted distance measure | ∖ | |
Dinh et al. [23] | Distance measure | ∖ | |
this paper | dynamic distance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Luo, M.; Li, S. A Dynamic Distance Measure of Picture Fuzzy Sets and Its Application. Symmetry 2021, 13, 436. https://doi.org/10.3390/sym13030436
Zhao R, Luo M, Li S. A Dynamic Distance Measure of Picture Fuzzy Sets and Its Application. Symmetry. 2021; 13(3):436. https://doi.org/10.3390/sym13030436
Chicago/Turabian StyleZhao, Ruirui, Minxia Luo, and Shenggang Li. 2021. "A Dynamic Distance Measure of Picture Fuzzy Sets and Its Application" Symmetry 13, no. 3: 436. https://doi.org/10.3390/sym13030436