# Some Results on Ricci Almost Solitons

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Lemma**

**1.**

**Lemma**

**2.**

## 3. Ricci Almost Solitons with Geodesic Soliton Vector Field

**Theorem**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

**Corollary**

**1.**

**Proof.**

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci Flow, Graduate Studies in Mathematics; AMS Scientific Press: New York, NY, USA, 2010; Volume 77. [Google Scholar]
- Hirica, I.E.; Udriste, C. Ricci and Riemann solitons. Balkan J. Geom. Appl.
**2016**, 21, 35–44. [Google Scholar] - Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A.G. Ricci almost solitons. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
**2011**, 10, 757–799. [Google Scholar] - Barros, A.; Ribeiro, E., Jr. Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc.
**2012**, 140, 213–223. [Google Scholar] [CrossRef] - Barros, A.; Gomes, J.N.; Ribeiro, E., Jr. A note on rigidity of the almost Ricci soliton. Arch. Math.
**2013**, 100, 481–490. [Google Scholar] [CrossRef] - Barros, A.; Batista, R.; Ribeiro, E., Jr. Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math.
**2014**, 174, 29–39. [Google Scholar] [CrossRef] [Green Version] - Cao, H.D. Recent progress on Ricci solitons. Adv. Lect. Math. ALM
**2009**, 11, 1–38. [Google Scholar] - Cao, H.D. Geometry of Ricci solitons. Chin. Ann. Math.
**2006**, 27B, 121–142. [Google Scholar] [CrossRef] - Deshmukh, S.; Alsodais, H. A note on Ricci solitons. Symmetry
**2020**, 12, 289. [Google Scholar] [CrossRef] [Green Version] - Deshmukh, S.; Alsodais, H. A note on almost Ricci soliton. Anal. Math. Phy.
**2020**. [Google Scholar] [CrossRef] - Ghosh, A. Ricci almost solitons satisfying certain conditions on the potential vector field. Publ. Math. Debrecen
**2015**, 87, 103–110. [Google Scholar] [CrossRef] - Sharma, R. Almost Ricci Solitons and K-contact geometry. Monatsh. Math.
**2014**, 175, 621–628. [Google Scholar] [CrossRef] - Sharma, R. Some results on almost Ricci solitons and geodesic vector fields. Beitr. Algebra Geom.
**2018**, 59, 289–294. [Google Scholar] [CrossRef] [Green Version] - Sharma, R.; Deshmukh, S. Ricci Almost Solitons with Associated Projective Vector Field. Available online: https://www.researchgate.net/profile/Sharief_Deshmukh/publication/345943040_Ricci_Almost_Solitons_With_Associated_Projective_Vector_Field/links/5fb28628a6fdcc9ae058eda0/Ricci-Almost-Solitons-With-Associated-Projective-Vector-Field.pdf (accessed on 23 June 2020).
- Wylie, W. Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc.
**2008**, 136, 1803–1806. [Google Scholar] [CrossRef] [Green Version] - Deshmukh, S. Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds. Mediterr. J. Math.
**2016**, 13, 2951–2958. [Google Scholar] [CrossRef] - Kenmotsu, K. A class of almost contact Riemannian manifolds. Tohoku Math. J.
**1972**, 24, 93–103. [Google Scholar] [CrossRef] - Deshmukh, S.; Khan, V.A. Geodesic vector fields and Eikonal equation on a Riemannian manifold. Indag. Math.
**2019**, 30, 542–552. [Google Scholar] [CrossRef] - Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970. [Google Scholar]
- Deshmukh, S.; Mikes, J.; Turki, N.B.; Vilcu, G.-E. A note on geodesic vector fields. Mathematics
**2020**, 8, 1663. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Deshmukh, S.; Alsodais, H.; Bin Turki, N.
Some Results on Ricci Almost Solitons. *Symmetry* **2021**, *13*, 430.
https://doi.org/10.3390/sym13030430

**AMA Style**

Deshmukh S, Alsodais H, Bin Turki N.
Some Results on Ricci Almost Solitons. *Symmetry*. 2021; 13(3):430.
https://doi.org/10.3390/sym13030430

**Chicago/Turabian Style**

Deshmukh, Sharief, Hana Alsodais, and Nasser Bin Turki.
2021. "Some Results on Ricci Almost Solitons" *Symmetry* 13, no. 3: 430.
https://doi.org/10.3390/sym13030430