Construction of Unknotted and Knotted Symmetric Developable Bands
Abstract
:1. Introduction
2. Results
2.1. Construction
2.1.1. Scaffolds
2.1.2. Connecting Curve of a Scaffold
2.1.3. Maximum Tilt Angle
2.1.4. Planar Development and Maximum Width of a Band
2.2. Elastic Bending Energy of a Band
2.3. Force Needed to Tighten an Unknotted Band on Its Supporting Scaffold
3. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Sadowsky, M. Ein elementarer Beweis für die Existenz eines abwickelbaren MÖBIUSschen Bandes und die Zurückführung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1930, 22, 412–415. [Google Scholar]
- Hinz, D.F.; Fried, E. Translation of Michael Sadowsky’s Paper “An elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem. J. Elast. 2015, 119, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, G.E. The dark side of the Moebius strip. Amer. Math. Mon. 1990, 97, 890–897. [Google Scholar] [CrossRef]
- Wunderlich, W. Über ein abwickelbares Möbiusband. Monatsh. Math. 1962, 66, 276–289. [Google Scholar] [CrossRef]
- Todres, R.E. Translation of W. Wunderlich’s “On a developable Möbius band”. J. Elast. 2015, 119, 23–34. [Google Scholar] [CrossRef]
- Guven, J.; Müller, M.M.; Vázquez-Montejo, P. Isometric bending requires local constraints on free edges. Math. Mech. Solids 2019, 24, 4051–4077. [Google Scholar] [CrossRef] [Green Version]
- Seguin, B.; Chen, Y.-C.; Fried, E. Closed unstretchable knotless ribbons and the Wunderlich functional. J. Nonlinear Sci. 2020, 30, 2577–2611. [Google Scholar] [CrossRef]
- Starostin, E.L.; van der Heijden, G.H.M. The shape of a Möbius strip. Nat. Mater. 2007, 6, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Starostin, E.L.; van der Heijden, G.H.M. Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips. J. Elast. 2015, 119, 76–112. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Huang, J.; Chen, W.; Bao, H. Geometrically exact simulation of inextensible ribbon. Comput. Graph. Forum 2015, 34, 145–154. [Google Scholar] [CrossRef]
- Bartels, S.; Hornung, P. Bending paper and the Möbius strip. J. Elast. 2015, 119, 113–136. [Google Scholar] [CrossRef]
- Moore, A.; Healey, T. Computation of elastic equilibria of complete Möbius bands and their stability. Math. Mech. Solids 2019, 24, 939–967. [Google Scholar] [CrossRef]
- Velimirović, L.S.; Ćiric, M.S.; Velimirović, N.M. On the Willmore energy of shells under infinitesimal deformations. Comput. Math. Appl. 2011, 61, 3181–3190. [Google Scholar] [CrossRef] [Green Version]
- Velimirović, L.S.; Cvetković, M.D.; Najdanović, M.S.; Velimirović, N.M. Variation of shape operator under infinitesimal bending of surface. Appl. Math. Comput. 2013, 225, 480–486. [Google Scholar] [CrossRef]
- Willmore, T.J. Note on embedded surfaces. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (NS) 1965, 11B, 493–496. [Google Scholar]
- Naghdi, P.M. The theory of shells and plates. In Handbuch der Physik, Volume VIa/2, Mechanics of Solids II; Truesdell, C., Ed.; Springer: Berlin, Germany, 1972; pp. 425–640. [Google Scholar]
- Germain, S. Recherches sur la Théorie des Surfaces Élastiques; Imprimerie de Huzard-Courcier: Paris, France, 1821. [Google Scholar]
- Stoker, J.J. Mathematical problems connected with the bending and buckling of elastic plates. Bull. Amer. Math. Soc. 1942, 48, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Weiner, J.L. On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 1978, 27, 19–35. [Google Scholar] [CrossRef]
- Nitsch, J.C.C. Boundary-value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 1993, 51, 363–387. [Google Scholar] [CrossRef] [Green Version]
- Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [Google Scholar] [CrossRef]
- Kuwert, E.; Schätzle, R. The Willmore functional. In Topics in Modern Regularity Theory; Mingione, G., Ed.; Edizioni della Normale: Pisa, Italy, 2012. [Google Scholar]
- Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 2015, 185, 11–45. [Google Scholar] [CrossRef] [PubMed]
- Guven, J.; Vázquez-Montejo, P. The geometry of fluid membranes: Variational principles, symmetries and conservation laws. In The Role of Mechanics in the Study of Lipid Bilayers; Steigmann, D.J., Ed.; Springer: Cham, Switzerland, 2018; pp. 167–219. [Google Scholar]
24.94 | 22.56 | 19.63 | 23.97 | 17.13 | 15.11 | 24.00 | 22.38 | 13.46 | 24.71 | 12.12 | 21.06 | 21.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönke, J.; Grunwald, M.; Fried, E. Construction of Unknotted and Knotted Symmetric Developable Bands. Symmetry 2021, 13, 431. https://doi.org/10.3390/sym13030431
Schönke J, Grunwald M, Fried E. Construction of Unknotted and Knotted Symmetric Developable Bands. Symmetry. 2021; 13(3):431. https://doi.org/10.3390/sym13030431
Chicago/Turabian StyleSchönke, Johannes, Michael Grunwald, and Eliot Fried. 2021. "Construction of Unknotted and Knotted Symmetric Developable Bands" Symmetry 13, no. 3: 431. https://doi.org/10.3390/sym13030431
APA StyleSchönke, J., Grunwald, M., & Fried, E. (2021). Construction of Unknotted and Knotted Symmetric Developable Bands. Symmetry, 13(3), 431. https://doi.org/10.3390/sym13030431